Instalaciones Eléctricas Residenciales
Mostrando las entradas con la etiqueta Historia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Historia. Mostrar todas las entradas

Carl Sagan y la ciencia para todos

2016/11/09

Instalaciones electricas residenciales - Carl Sagan

En el blog de instalaciones eléctricas residenciales también nos interesa hablar de los personajes que han hecho grandes contribuciones al desarrollo de la humanidad. Hoy toca el turno a uno de los divulgadores de la ciencia más carismáticos e influyentes del siglo pasado: Carl Sagan.
Sagan se distinguió por su empeño en hacer la ciencia divertida e interesante en vez de un tema “oscuro” y difícil al que pocos tienen acceso.
Nació un día como hoy, el 9 de noviembre de 1934, en Nueva York. Él recuerda en uno de sus libros ser llevado por sus padres a la Exposición Internacional de Nueva York en 1939 para observar los avances científicos de la época.
Sus padres, de origen humilde, y sin saber nada de ciencia, contribuyeron a que decidiera convertirse en científico. Lejos de desalentarlo y hacer que estudiara otra cosa, le dieron todo su apoyo. Se graduó como físico y poco después obtiene el doctorado en Astronomía y Astrofísica.
Entre muchos proyectos en los que participó, se encuentran las sondas espaciales Pioneer y Voyager, estas últimas han recorrido ya todos los planetas del Sistema Solar y se encuentran próximos a abandonarlo, para viajar indefinidamente por el universo. Aún después de más de 30 años de haber sido lanzadas al espacio continúan enviando información de sus hallazgos a la Tierra. En cada una de estas naves, Sagan incluyó un disco de oro con información acerca de la vida en la tierra, fotos, sonidos, saludos en distintas lenguas, y las ondas cerebrales de una mujer.


Su trabajo en la NASA lo combinó con el de profesor y se convirtió en el director del Laboratorio de Ciencias Espaciales en la Universidad de Cornell (Nueva York), donde realizó numerosos experimentos acerca del origen de la vida.
Carl Sagan fue otro gran científico que se preocupaba por el destino de la humanidad. De sus investigaciones sobre el planeta Venus se pudo advertir sobre los peligros del cambio climático y siempre se pronunció en contra de las armas nucleares.
Uno de sus primeros libros, Los Dragones del Edén, publicado en 1978, fue galardonado con un premio Pulitzer, uno de los más prestigiosos en el medio editorial de Estados Unidos.
Quizá su proyecto más famoso fue la serie para la televisión Cosmos, de la cual también se publicó un libro. Carl Sagan comprendió el poder y la influencia de este medio que utilizó para divulgar la ciencia, la historia y los misterios del universo. Creía firmemente en las ventajas de hacer la ciencia accesible para todos.
Su amplio conocimiento y su pasión por la ciencia le permitieron explicarla con palabras sencillas y amenas que logran interesar a sus lectores de principio a fin.
Falleció el 20 de diciembre de 1996 y un asteroide ha sido bautizado con su nombre, también el sitio
de amartizaje de la sonda Mars Pathfinder, así como varios premios y reconocimientos otorgados a destacados divulgadores de la ciencia.

La curiosa historia de la electricidad

2016/06/02

Instalaciones eléctricas residenciales - la curiosa historia de la electricidad

La historia de la electricidad se refiere al estudio y uso humano de la electricidad, al descubrimiento de sus leyes como fenómeno físico y a la invención de artefactos para su uso práctico.
El fenómeno en sí, fuera de su relación con el observador humano, no tiene historia; y si se la considerase como parte de la historia natural, tendría tanta como el tiempo, el espacio, la materia y la energía. Como también se denomina electricidad a la rama de la ciencia que estudia el fenómeno y a la rama de la tecnología que lo aplica, la historia de la electricidad es la rama de la historia de la ciencia y de la historia de la tecnología que se ocupa de su surgimiento y evolución.


En el siguiente vídeo, publicado originalmente en el canal de YouTube de "Los Creadores", observamos la historia de varios de los personajes, que con sus descubrimientos y aportaciones, contribuyeron al desarrollo de la electricidad como ciencia y posteriormente como industria, permitiendo que actualmente gozamos de sus beneficios en nuestras instalaciones eléctricas residenciales.


La técnica y su impacto en la cultura y la historia.

2016/04/20

Instalaciones eléctricas residenciales - Empleados de la primera planta de energía eléctrica Siemens en México, 1905

La técnica no existe por sí misma, sino en un contexto social que la condiciona por particularidades económicas, culturales e históricas. Sabemos que surge con el fin de satisfacer necesidades y que varía según el entorno; por ejemplo, las técnicas agrícolas cambian según el tipo de tierra, los hábitos alimenticios y el momento histórico; primero se usó la coa, luego el arado, le siguió el tractor y ahora las trilladoras. El automóvil, por ejemplo, desplazó a la carreta y los viajes se acortaron de días a horas, beneficiando y modificando todas las actividades socioculturales. El descubrimiento de la luz eléctrica no sólo cambió la vida de las personas, sino al mundo entero en todos los quehaceres de la humanidad.
A lo largo de la historia, el desarrollo tecnológico ha sido la mejor oportunidad del hombre para satisfacer sus necesidades básicas y no básicas; sin embargo, su abuso indiscriminado ha puesto en peligro el equilibrio natural del planeta. Por supuesto, no debemos culpar a la tecnología por los excesos en el consumo y transformación de recursos naturales y la consiguiente contaminación ambiental. El hombre es quien ha incurrido en los excesos y el reto ahora es tomar acciones para detener la contaminación y el desequilibrio ecológico.


La ingeniería eléctrica es una ciencia relativamente nueva que comenzó a impartirse en las universidades durante el siglo XIX y sienta sus bases en los experimentos científicos de Alejandro Volta, quien inventó la primera pila eléctrica en 1800, llamada pila voltaica, que transforma energía química en eléctrica. Desde entonces, varios científicos en ingenieros dedicaron su talento al estudio de la energía eléctrica y sus aplicaciones industriales.
El estudio de la electricidad cobró importancia cuando se descubrió su potencial industrial, es decir, que podría utilizarse en la industria para crear mercancías que satisficieran necesidades sociales y al mismo tiempo dar un valor al capital invertido para crear objetos. Entre las personalidades más importantes que participaron en el desarrollo de la ingeniería eléctrica cabe mencionar a:

  • Georg Ohm, quien midió la relación entre corriente eléctrica y diferencia de potencial en un conductor (1827).
  • Michael Faraday descubrió la inducción electromagnética (1831).
  • James Clerk Maxwell publicó la teoría unificada dela electricidad y magnetísmo (1873).
  • Nicola Tesla, inventor de la corriente alterna (1887), creó el método de distribución de energía eléctrica que se utiliza actualmente en todo el mundo.
Tuvieron que pasar varias décadas para que la electricidad diera el salto de la industria hacia las instalaciones eléctricas residenciales.
El uso de la energía eléctrica a nivel social -en la industria, el comercio, la administración pública y el hogar- requiere la participación de diferentes profesionistas, cada uno aplicando diversas técnicas; el científico descubre el comportamiento del electrón libre en la Naturaleza; el ingeniero eléctrico aplica ese conocimiento para controlar y aprovechar la energía; los industriales la utilizan para crear bienes de consumo que distribuyen los comerciantes, y la población utiliza la energía controlada para realizar sus tareas cotidianas.
La ciencia, la tecnología y la técnica requieren como fin último entender, transformar y controlar los materiales y la energía que ya existen en la Naturaleza, con el fin de crear diversos satisfactores sociales. En el caso de la electricidad, estudiamos su comportamiento en la Naturaleza para comprenderla y poder controlarla; una vez controlada, la aplicamos a dispositivos eléctricos, electromecánicos y digitales que nos facilitan el trabajo cotidiano. De esta manera, el bienestar social depende de la relación que establecemos con la Naturaleza a través de diversas técnicas.

James Clerk Maxwell y la teoría electromagnética de la luz

2015/12/22

instalaciones electricas residenciales - james clerk maxwell

"Una época científica terminó y otra empezó con James Clerk Maxwell", dijo Albert Einstein. Heindrich Hertz le llamaba "Maestro Maxwell". Como muchos otros científicos, pensaban que el escocés era un genio. Pero también es uno de los más desconocidos científicos famosos.
Eso a pesar de que su pionero trabajo sobre la naturaleza de la luz cruzó fronteras del conocimiento que hicieron posibles tecnologías de las que dependemos en la actualidad en nuestras instalaciones eléctricas residenciales, desde teléfonos celulares y wifi hasta escáneres y hornos microondas, sin olvidar la radio y la televisión, unos pocos.
Además, su fascinación por el color resultó en la creación de la primera foto a color de la historia.

Instalaciones electricas residenciales - primera fotografia a color
Primera fotografía a color de la historia, obtenida por Maxwell, una cinta de tartán escocés .

Pero, ¿quién era y por qué es tan admirado por sus iguales?
James Clerck Maxwell nació en Edimburgo en 1831, en el seno de una familia escocesa de la clase media, hijo único de un abogado de Edimburgo. Tras la temprana muerte de su madre a causa de un cáncer abdominal (la misma dolencia que pondría fin a su vida), recibió la educación básica en la Edimburg Academy, bajo la tutela de su tía Jane Cay.
Desde pequeño era tan curioso que su tía decía que "era humillante que un niño te preguntara tantas cosas que uno no podía responder".
Con tan sólo dieciséis años ingresó en la Universidad de Edimburgo, y en 1850 pasó a la Universidad de Cambridge, donde deslumbró a todos con su extraordinaria capacidad para resolver problemas relacionados con la física. Cuatro años más tarde se graduó en esta universidad, pero el deterioro de la salud de su padre le obligó a regresar a Escocia y renunciar a una plaza en el prestigioso Trinity College de Cambridge.

Instalaciones eléctricas residenciales - joven james clerk maxwell
James C. Maxwell a los 23 años.

En 1856, poco después de la muerte de su padre, fue nombrado profesor de filosofía natural en el Marischal College de Aberdeen. Dos años más tarde se casó con Katherine Mary Dewar, hija del director del Marischal College. En 1860, tras abandonar la recién instituida Universidad de Aberdeen, obtuvo el puesto de profesor de filosofía natural en el King's College de Londres.
En esta época inició la etapa más fructífera de su carrera, e ingresó en la Royal Society (1861). En 1871 fue nombrado director del Cavendish Laboratory. Publicó dos artículos, clásicos dentro del estudio del electromagnetismo, y desarrolló una destacable labor tanto teórica como experimental en termodinámica; las relaciones de igualdad entre las distintas derivadas parciales de las funciones termodinámicas, denominadas relaciones de Maxwell, están presentes de ordinario en cualquier libro de texto de la especialidad.
Sin embargo, son sus aportaciones al campo del electromagnetismo las que lo sitúan entre los grandes científicos de la historia.
En 1865, basado en las teorías de Michael Faraday, Maxwell propuso la teoría electromagnética de la luz: "todo emisor luminoso produce un campo magnético oscilante perpendicular a otro eléctrico también oscilante, siendo la dirección de propagación perpendicular a ambos".



El magnetismo y la electricidad eran en ese entonces grandes desconocidos, y Faraday estaba haciendo todos los experimentos posibles para explorarlos. Había desarrollado aplicaciones prácticas como el dínamo y el motor, y logró entender detalladamente ambos fenómenos, aportando mucho a la manera en la que los concebimos. Enfocó la atención no tanto en el imán sino en el espacio que lo rodea. Dijo que no era sólo un pedazo de hierro, sino algo más complejo: es el centro de un sistema de invisibles tentáculos curvos que se extienden para atraer o rechazar otros imanes o metales. A ese sistema lo llamó 'campo'. Pero Faraday no pudo ir más lejos. Como era autodidacta había llegado al límite de sus capacidades: sencillamente, no contaba con los conocimientos académicos necesarios. Faraday dio un paso gigante para hacer por la electricidad y el magnetismo lo que Newton había hecho por la gravedad. Lo que faltaba era matemáticas. Faraday hizo contacto con Maxwell por correspondencia y estaba muy contento por haber encontrado a un matemático tan extraordinario; Maxwell aceptó el reto de demostrar matematicamente que la electricidad y el magnetismo estaban conectados, y que los dos juntos (electromagnetismo) podían crear diferentes tipos de ondas que iban a la misma velocidad, la velocidad de la luz.


Reveló también que la luz que los humanos podíamos detectar (la que llamamos "visible") era sólo una parte de la gama de ondas electromagnéticas, que incluyen ondas de radio, microondas, rayos X, rayos Gamma.
Pasó mucho tiempo antes de que los otros científicos aceptar que era una buena idea. Era demasiado radical.

Instalaciones electricas residenciales - maxwell trabajando

Tomó casi 15 años antes de que alguien pudiera mostrar que ese concepto matemático era algo físico que se podía medir y producir en un laboratorio. El científico Heinrich Hertz produjo ondas de radio, tal como Maxwell predijo, las midió y confirmó que iban a la velocidad de la luz. Pero, aunque se complació por haber probado que Maxwell estaba en lo cierto, cuando le preguntaron cuáles eran las ramificaciones, respondió que ninguna.
No obstante, abrió el camino para que un científico realmente brillante, Einstein, tomara las ideas de Maxwell y las desarrollara hasta llegar a su teoría de la relatividad.

Si te gustó el artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

5 hipótesis sobre la estructura de la materia

2015/11/17

El hombre en su afán de conocer el mundo, ha elaborado a lo largo de la historia numerosas hipótesis sobre la estructura de la materia que en síntesis son las siguientes:

  1. Demócrito afirmába que la materia toda está formada por diminutas partículas que no podemos ver. Dichas partículas no pueden reducirse más y se llaman átomos (del griego: indivisible).
  2. Aristóteles decía que las miles de cosas existentes en la tierra deben ser combinaciones de ciertos elementos básicos: aire, fuego, tierra y agua. Cada elemento cuenta con dos propiedades. Así por ejemplo el agua es fría y húmeda, el fuego es seco y caliente, etc.
  3. Los alquimistas, en los siglos siguientes, se esforzaron por descubrir una combinación de elementos que produjese oro.
    Instalaciones electricas residenciales - alquimistas
  4. John Dalton en 1808 declaró que "con los conocimientos de química que poseemos no podemos transformar en oro otros elementos, porque el oro es uno de los elementos básicos y los átomos propios de cada elemento son distintos de los átomos de los demás elementos".
  5. Niels Bohr en 1913 expuso la teoría: "un átomo es como un sistema solar en miniatura, en el que los electrones (planetas) giran al rededor de un núcleo (sol).


Actualmente sabemos que la materia está compuesta de átomos de diferentes clases, los cuales tienen una estructura algo más compleja que un sistema solar, sin embargo, para explicar de forma sencilla cómo se comporta la electricidad en nuestras instalaciones electricas residenciales, se aceptan las ideas de Bohr.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

4 aportaciones de Augustin Fresnel a la teoría ondulatoria de la luz

2015/11/12

instalaciones electricas residenciales - Augustin Fresnel
Augustin-Jean Fresnel (10 de mayo de 1788 – 14 de julio de 1827) fue un físico francés que contribuyó significativamente a la teoría de óptica ondulatoria. Estudió el comportamiento de la luz tanto teórica como experimentalmente.


En 1820, tomando como base los trabajos de Christiaan Huygens y los experimentos de Thomas Young, estableció los siguientes puntos:
  1. Toda fuente luminosa está compuesta de partículas osciladoras que efectuan vibraciones periódicas amortiguadas. Cada partícula osciladora tiene su frecuencia (color). Ya que los períodos y las fases son independientes, las vibraciones son incoherentes.
  2. La transmisión de energía de la fuente luminosa se efectúa por ondas transversales en un medio llamado éter.
  3. En el vacío, la velocidad de propagación de la luz es de 300,000,000 m/s, medida comprobada experimentalmente por Focault.
  4. El órgano receptor es el ojo, cuya gama visible va de 0.4 micrometros a 0.8 micrometros en longitud de onda.
Sus trabajos en óptica recibieron durante su vida poco reconocimiento público, y algunos de sus trabajos no fueron publicados por la Académie des Sciences hasta mucho después de su muerte. Pero, como escribió a Young en 1824, "todos los cumplidos recibidos de Arago, Laplace y Biot nunca le dieron tanto placer como el descubrimiento de la verdad teórica o la confirmación de un cálculo por un experimento”.
Si te gustó el artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

Principios básicos de circuitos eléctricos

2014/01/01


El desarrollo del circuito eléctrico está ligado al desarrollo mismo de la electricidad. Uno de los primeros investigadores y desarrolladores de los circuitos eléctricos fue William Gilbert, quien a inicios del siglo XVI llamó fuerza eléctrica de atracción al fenómeno que se presentaba cuando se frotaban ciertos materiales, lo que hoy conocemos como estática. El resultado de su investigación derivó en la clasificación de dos tipos de materiales hasta ese momento: conductores y aislantes.

William Gilbert

El físico alemán Otto von Guericke continúo con el trabajo de Gilbert, obteniendo resultados interesantes al agregar carga electrostática en dos materiales, dando el efecto de atracción y posteriormente de repulsión. Entre otras cosas, Guericke fabricó la primera máquina electrostática y generó chispas a partir de un globo de azufre; como resultado de estas investigaciones se derivaron otras orientadas a entender la naturaleza de los rayos y relámpagos.

Instalaciones eléctricas residenciales - Otto von Guericke
Otto von Guericke

Charles Cisternay Du Fay, al realizar diversos experimentos, notó que una lámina de oro siempre era repelida por una barra de vidrio con carga electrostática. Después de analizar el fenómeno, publicó sus trabajos en 1733, donde menciona la existencia de dos tipos de cargas eléctricas, a las que llamó carga vitria y carga resinosa, debido a que ambas se manifestaban de una forma al frotar con un paño de seda el vidrio (carga positiva), y de forma distinta al frotar con una piel algunas sustancias resinosas como el ámbar o la goma (carga negativa).

Charles Cisternay Du Fay

A la par de Du Fay, el físico holandés Pieter van Musschenbroek realizó varios experimentos sobre la electricidad. Uno de ellos ha trascendido y actualmente es replicado como experimento en laboratorios de muchas escuelas: investigar si el agua encerrada en un recipiente puede conservar cargas eléctricas.

Otro célebre experimento se debió a la falta del uso del equipo de protección personal, ya que en el desarrollo de otro experimento un asistente tocó la botella y recibió una fuerte descarga eléctrica. De esta manera fue descubierta la botella de Leyden y la base de los actuales capacitores.


Uno de los investigadores que profundizaron en el estudio de la botella de Leyden fue el físico William Watson, quien agregó una cobertura de metal, descubriendo que de esta forma se incrementaba la descarga eléctrica. En 1747 demostró que una descarga de electricidad estática es una corriente eléctrica y se propaga mejor en un ambiente enrarecido que en condiciones normales.

William Watson

Todas estas observaciones empiezan a dar sus frutos con Luigi Galvani, quien a partir de 1780 comenzó a incluir en sus conferencias pequeños experimentos prácticos que demostraban a los estudiantes la naturaleza y propiedades de la electricidad; en uno de ellos, aplicó una pequeña corriente eléctrica a la médula espinal de una rana muerta y observó que se producían grandes contracciones musculares en los miembros de la misma. Estas descargas podían lograr que las patas (incluso separadas del cuerpo) saltaran igual que cuando el animal estaba vivo, esto originó múltiples vertientes de investigación para muchas ramas de la ciencia.

Luigi Galvani

En paralelo con Galvani, Alessandro Volta comenzó a hacer sus propios experimentos de electricidad con animales, llegando a la conclusión de que no era necesaria la participación de los músculos de los animales para producir corriente y que la estructura muscular del animal era sólo un conductor. Para defender su teoría, Volta construyó la llamada “pila de Volta”, con esto no sólo demostró que su teoría era correcta sino que revolucionó el uso de la electricidad y dio al mundo uno de sus mayores beneficios: el control de la circulación de una corriente eléctrica.

Alessandro Volta

Volta pensaba que existía una diferencia eléctrica entre dos metales (hierro y latón). Para corroborar sus afirmaciones, y utilizando su lengua como sensor, eligió el zinc y el cobre como materiales a utilizar en sus experimentos. Debido a que el uso de una sola placa de zinc y otra de cobre proporcionaban un voltaje demasiado bajo para poder medirlo, construyó un sistema que le permitía colocar una serie de discos de zinc y cobre apilados (de ahí el nombre de pila) de forma alternada, separados entre ellos por cartón empapado en salmuera.

Pila de Volta

Uniendo los extremos con un cable metálico se producía una corriente eléctrica regular y continua, con una tensión resultante de la suma de los diferentes pares zinccobre. La pila voltaica consistía en 30 discos de metal, separados por paños humedecidos con agua salada, su funcionamiento era simple: si al extremo inferior de esta pila se le conectaba un alambre se establecía una corriente eléctrica al cerrarse el circuito; al principio Volta lo dio a conocer como “órgano eléctrico artificial”.

Además, Volta, uno de los investigadores más reconocidos del fenómeno eléctrico, construyó una serie de dispositivos capaces de producir electricidad que salía continuamente al exterior a medida que se producía, esto creaba una corriente eléctrica, que resultó mucho más útil que una carga de electricidad estática que no fluyera; actualmente lo conocemos como generador eléctrico. A partir de este invento la electricidad fue realmente aplicable en todos los sentidos, ya que se pudieron construir circuitos para diferentes finalidades.

Posteriormente, Georg Simon Ohm sentó las bases del estudio de la circulación de las cargas eléctricas en el interior de materias conductoras y formuló la ley que relaciona las tres magnitudes más importantes: tensión, intensidad de corriente y resistencia.

Breve historia de los sistemas eléctricos subterráneos en México

2013/10/21

Instalaciones eléctricas residenciales - Catedral de Morelia

Por su alto nivel de confiabilidad, los sistemas eléctricos subterráneos han crecido significativamente en los últimos años.

Aunque los primeros pasos para transmitir electricidad vía subterránea se dieron en 1880, fue hasta 1924 que en México comenzó a introducirse este tipo de sistema con la puesta en marcha de 3 alimentadores radiales cuya capacidad era de 3000 V; 2 años después (1926) se usaron 2 alimentadores radiales y su capacidad aumentó al doble con 6000 V.

Pero fue hasta los años sesenta que la CFE comenzó a construir sistemas eléctricos subterráneos con cables aislados secos y transformadores convencionales. En esta época, la construcción de dichas redes representaba grandes inversiones debido a que los materiales utilizados eran muy costosos e inaccesibles.

A partir de 1970 se introdujeron los transformadores tipo sumergible y pedestal de frente-fuerte, y con ellos los conectores pre-moldados separables.


En el año 2002, en el Congreso Nacional de Especialistas de Sistemas Eléctricos Subterráneos se presentaron las nuevas normas de distribución de líneas subterráneas, haciéndolas menos costosas sin menoscabo de su confiabilidad. Se estableció que los planos deben realizarse conforme a los proyectos e indicaciones de la supervisión de la obra de la CFE; además para esto se tiene que utilizar equipo topográfico para evitar las posibles interferencias y cruzamiento con otras instalaciones existentes, ya sea con cables de teléfono, agua potable, drenaje o alumbrado.

Instalaciones eléctricas residenciales - Frente de la Catedral de Morelia

En 2005 este tipo de sistemas fueron en ascenso; en un inicio sólo se proyectaban en zonas residenciales, centros turísticos, hoteles y grandes naves industriales.

En la actualidad, las instalaciones que requieren remodelación y las que en un futuro se realicen, son y serán subterráneas, y aplican para desarrollos de vivienda (de interés social, medio y residencial), centros históricos, zonas turísticas, centros de recreación, parques industriales y todo tipo de obra eléctrica que requiera de alimentación, salvo que las condiciones del terreno demanden una instalación aérea.

Instalaciones eléctricas residenciales - Tendido de líneas subterráneas

Una de las ventajas que ofrecen las redes subterráneas es la reducción en los cortes de suministro de energía por cuestiones ajenas al sistema (sismos, derrumbes, inundaciones, maremotos, etcétera), porque la instalación no está expuesta, lo que garantiza la continuidad del servicio y/o el rápido restablecimiento del mismo.

12 personajes clave en la historia del electromagnetísmo

2013/06/05

El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron presentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell en el año 1865.

Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.

A continuación te presentamos 12 personajes que con sus investigaciones nos ayudaron a tener una mejor comprensión y dominio del fenómeno electromagnético:

  1. Tales de Mileto (640-546 a. C., vivió en Mileto, colonia griega del Asia Menor, actual Turquía) Filósofo griego a quien se atribuye el descubrimiento de las propiedades eléctricas del ámbar.

  2. Instalaciones eléctricas residenciales - Representación de Tales de Mileto

  3. Petrus Peregrinus (siglo XIII, Francia) En 1269 escribió Epistola de Magnete, que es el primer tratado que se conoce sobre las propiedades de los imanes.

  4. Instalaciones eléctricas residenciales - Representación de Petrus Peregrinus

  5. William Gilbert (1544-1603, Inglaterra) En 1600 se publicó su obra De Magnete, el primer estudio científico sobre los fenómenos electrostáticos y magnéticos. Fue el primero en afirmar que la Tierra era un gigantesco imán y el primero en emplear el término eléctrico cuando descubrió esta propiedad en algunos cuerpos.

  6. Instalaciones eléctricas residenciales - Representación de William Gilbert

  7. Charles de Coulomb (1736-1806, Francia) En 1777 inventó la balanza de torsión para medir la atracción eléctrica y magnética y hacia 1785 estableció la ley de Coulomb, principio que rige la interacción entre las cargas eléctricas. En sus memorias expuso teóricamente los fundamentos del magnetismo y de la electrostática.

  8. Instalaciones eléctricas residenciales - Charles Coulomb

  9. Hans Christian Oersted (1777-1851, Dinamarca) Desde 1813 predijo que encontraría una conexión entre los fenómenos eléctricos y magnéticos, pero fue hasta 1819 cuando Oersted y Ampère demostraron la existencia de un campo magnético alrededor de todo conductor atravesado por una corriente eléctrica, descubrimiento que dio inicio al estudio del electromagnetismo como área unificada.

  10. Instalaciones eléctricas residenciales - Hans Christian Oersted


  11. André Marie Ampère (1775-1836, Francia) En 1822 y 1826 se publicaron sus obras. Desarrolló una teoría matemática en la que explica los fenómenos electromagnéticos, amplió las observaciones de Oersted e inventó la bobina solenoide para producir campos magnéticos.

  12. Instalaciones eléctricas residenciales - Representación de André Marie Ampére

  13. Michael Faraday (1791-1867, Inglaterra) En 1831 descubrió la inducción electromagnética, hallazgo que permitió la invención del generador y el motor eléctricos, demostró que un campo magnético cambiante podía producir una corriente eléctrica, entre otras importantes contribuciones que son la base de la tecnología electromagnética.

  14. Instalaciones eléctricas residenciales - Michael Faraday

  15. James Clerk Maxwell (1831-1879, Escocia) En 1873 publicó su obra Treatise on Electricity and Magnetism. Unificó todas las teorías anteriores y desarrolló la teoría electromagnética clásica. Introdujo los conceptos de campo electromagnético y onda electromagnética, con sus ecuaciones demostró que la luz visible era de naturaleza electromagnética y postuló que era posible la radiación electromagnética de otras longitudes de onda.


  16. Heinrich Hertz (1857-1894, Alemania) En 1888 comprobó que las ondas electromagnéticas pueden viajar a través del aire libre y del vacío, detectó y generó ondas de radio y demostró que sólo se diferenciaban de la luz visible por la longitud de onda, la polarización, la reflexión y la refracción.

  17. Instalaciones eléctricas residenciales - Heinrich Hertz

  18. Guglielmo Marconi (1874-1937, Italia) Adaptó el sistema de Hertz para construir un emisor de radio. En 1901 envió señales de radio a través del Océano Atlántico. Marconi fue pionero en el desarrollo de la comunicación por radio para barcos.

  19. Instalaciones eléctricos residenciales - Guglielmo Marconi

  20. Thomas Alva Edison (1847-1931, Estados Unidos) Dio al electromagnetismo aplicaciones prácticas para la telegrafía, la telefonía, la iluminación y la generación de potencia. En sus trabajos comenzó a emplearse la corriente continua para la transmisión de la energía eléctrica.

  21. Instalaciones eléctricas residenciales - Thomas Alva Edison

  22. Nikola Tesla (1856-1943, Imperio Austríaco-Estados Unidos) En 1882 inventó el motor de inducción e inició el desarrollo de varios dispositivos que usaban el campo magnético rotativo, desarrolló la transmisión de la corriente alterna, el sistema polifásico de distribución eléctrica e inventó el motor de inducción, diseñó algunos experimentos para producir rayos X, además de otras aportaciones al campo del electromagnetismo.


Las investigaciones posteriores se encargaron de estudiar el origen atómico y molecular de las propiedades de la materia, así surgió una nueva rama de la física llamada mecánica cuántica y más adelante se completó una teoría cuántica del campo electromagnético conocida como electrodinámica cuántica.

La principal aplicación de los circuitos trifásicos

2013/05/29

Instalaciones eléctricas residenciales - Distribución aérea trifásica

Los sistemas reales de interconexión eléctrica se instalan disponiéndose en configuraciones trifásicas, bifásicas, monofásicas y en algunos casos hexafásicas, así que debemos aprender algunos conceptos que nos faciliten su entendimiento.

Un sistema polifásico es una serie de conexiones que requieren cierto número de conductores que transportan la energía en forma de corriente alterna a un nivel de tensión específico, para ello es necesario conocer las características de cada caso. En este artículo trataremos únicamente el sistema trifásico, teniendo en cuenta que es uno de los más comunes en nuestro país y en el desarrollo de nuestra actividad.

Antes de continuar con la explicación de los conceptos básicos de los circuitos trifásicos, hablaremos un poco de su historia, describiremos la operación de una central hidroeléctrica y mencionaremos los conceptos técnicos que definen al elemento encargado de hacer la conversión de energía, así como los parámetros de un circuito trifásico; el uso de estos sistemas será tema que trataremos en próximos números de esta revista. Comencemos entonces con un poco de historia.

En 1882, el inventor servio-americano Nikola Tesla, descubrió el principio del campo magnético rotatorio, el cual hizo posible la invención de la maquinaria de corriente alterna. El descubrimiento del campo magnético rotatorio producido por las interacciones de corrientes de dos y tres fases en un motor fue uno de sus más grandes logros y sirvió como base para la creación del motor de inducción y del sistema polifásico de generación y distribución de electricidad.

Gracias a esto, grandes cantidades de energía eléctrica pueden ser generadas y distribuidas eficientemente a lo largo de grandes distancias, desde las plantas generadoras hasta las poblaciones a las que alimentan. Hasta estos días se sigue utilizando la forma trifásica del sistema polifásico de Tesla para la transmisión de la electricidad, además, la conversión de electricidad en energía mecánica es posible gracias a las versiones mejoradas de los motores trifásicos de Tesla.

La principal aplicación para los circuitos trifásicos se encuentra en la distribución de la energía eléctrica por parte de la compañía de luz a la población. Nikola Tesla probó que la mejor manera de producir, transmitir y consumir energía eléctrica era usando circuitos trifásicos.

En Mayo de 1885 George Westinghouse, cabeza de la compañía de electricidad Westinghouse, compró las patentes del sistema polifásico de generadores, transformadores y motores de corriente alterna de Tesla.

En octubre de 1893 la comisión de las Cataratas del Niágara otorgó a Westinghouse un contrato para construir la planta generadora en las cataratas, la cual sería alimentada por los primeros dos de los diez generadores que Tesla diseñó. Dichas dinamos de 5000 caballos de fuerza eran las más grandes hasta ese momento construidas. General Electric registró algunas de las patentes de Tesla y consiguió un contrato para construir 22 millas de líneas de transmisión hasta Búfalo. Para este proyecto se utilizó el sistema polifásico de Tesla. Los primeros tres generadores de corriente alterna en el Niágara se pusieron en marcha el 16 de noviembre de 1896.

En algún momento hemos escuchado el término generación y de alguna manera tenemos una idea de su significado y funcionamiento, así que sin ahondar mucho en conceptos técnicos, describiremos la generación de energía eléctrica en una central hidroeléctrica.

Como sabemos, la mayor cantidad de la energía producida en México se deriva de las centrales hidroeléctricas, que son más de 60 en todo el país. La tecnología de las principales instalaciones se ha mantenido igual desde el siglo pasado. Las centrales dependen de un gran embalse de agua contenido en una presa. El caudal de agua se controla y se puede mantener casi constante.

El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales. El diseño de las turbinas depende del caudal de agua; las turbinas Francis se utilizan para caudales grandes y saltos medios y bajos, y las turbinas Pelton para grandes saltos y pequeños caudales.

Además de las centrales situadas en presas de contención que dependen del embalse de grandes cantidades de agua, existen algunas centrales que funcionan con la caída natural del agua de caudal uniforme, éstas se denominan centrales de agua fluente, de este tipo es la central de las Cataratas del Niágara.

Dentro de la central generadora, el elemento que realiza la conversión de energía mecánica a eléctrica es el generador, cuya operación se describe de la siguiente manera:

La conversión comienza al hacer girar una espira rígida con velocidad constante (ω) dentro de un campo magnético uniforme, el flujo (φ) que corta la espira tendrá una variación senoidal y, en consecuencia, se induce una fuerza electromotriz (FEM) de forma senoidal; a este conjunto de elementos se le conoce como generador.

Instalaciones eléctricas residenciales - Generador de corriente alterna

Para demostrar lo anterior desarrollaremos la ecuación:

φ = BS cos ωt

donde φ es el flujo magnético, B es el campo magnético, S es el vector superficie y cosωt es el ángulo debido a la velocidad angular (ω) en un tiempo (t).


De lo anterior podemos determinar la tensión e , con base en la siguiente relación y aplicando la derivada al flujo magnético.
Instalaciones eléctricas residenciales - Determinación de la tensión eléctrica en un sistema trifásico

De esta forma demostramos que el movimiento de la espira da como resultado una FEM senoidal.

Ahora bien, si en lugar de tomar una espira se toman tres espiras iguales y se montan en un mismo eje formando ángulos de 120º entre sí, al hacer girar las espiras con velocidad constante (ω) dentro del campo magnético, se inducirá en cada espira una FEM igual a:

    e1= EM senωt
    e2= EM senωt + 1200
    e3= EM senωt + 2400

Los ángulos de 120º y 240º se deben a la configuración de los devanados en el eje y con respecto a la primera espira. Por otro lado, la corriente se obtiene conectando una carga a cada espira, la forma de esta será también senoidal. Las expresiones matemáticas que se tienen son:

    i1= IMsen(ωt+φ1)
    i2= IMsen(ωt+1200+φ2)
    i3= IMsen(ωt+2400+φ3)

Donde φ es el desfase entre corriente y tensión en cada fase. El conjunto de estas tres corrientes o tensiones iniciales constituyen un sistema trifásico equilibrado de corrientes o tensiones.

Instalaciones eléctricas residenciales - Gráfica de un sistema trifásico

Esta configuración presenta varios inconvenientes, pues se necesita un complejo sistema de colectores y escobillas para poder recoger las tensiones producidas.

Actualmente los tres devanados se encuentran soportados en el estator, mientras que el rotor está imantado o lleva un electroimán para generar el campo magnético, este rotor es la parte móvil del alternador.

Los generadores modernos con los devanados soportados en el estator son más económicos y fiables que los alternadores antiguos. Los generadores cuyo rotor lleva un electroimán son alimentados con una fuente de corriente continua para activar el electroimán y poder generar el campo magnético.

Instalaciones eléctricas residenciales - Diagrama de generador trifásico

Como se puede observar en la imagen del generador, la distancia entre los centros de los devanados es de 120°, gracias a ello se obtienen tres señales alternas diferentes y distanciadas entre sí 120°:

A la salida del generador están las conexiones de las subestaciones elevadoras de voltaje, éste pasa directamente a la red de transmisión trifásica a través de conductores montados en torres, después llega a una subestación reductora y sale nuevamente a la red de distribución por conductores en postes hasta los transformadores que llevan la energía eléctrica a nuestros domicilios.

Si las cargas se encuentran distribuidas de manera balanceada las corrientes debidas a los voltajes del circuito también lo estarán, de esta forma se logra un circuito trifásico balanceado.

Así es como se genera la energía eléctrica por medio de una central hidroeléctrica. En próximas entradas trataremos lo correspondiente a los circuitos trifásicos de manera más detallada.

Pasado y presente de la Fibra óptica

2013/05/17

Instalaciones eléctricas residenciales - Fibra optica

La creación de la fibra óptica ha permitido grandes adelantos en el campo de las comunicaciones. Tan sólo en México, el par de hilos propiedad de CFE tiene la capacidad para permitir 50 millones de llamadas simultáneas. Pero su invención no ha sido fácil, es el trabajo de muchos investigadores y la realización de ideas visionarias.

La fibra óptica es utilizada para la transmisión de imágenes e información, y precisamente porque es la base de la nueva tecnología de la comunicación, influye en nuestra vida cotidiana.

La fibra óptica es un filamento cilíndrico transparente, fabricado en vidrio, que posee la propiedad de propagar las ondas electromagnéticas colocadas en el espectro visible.

La comunicación entre dispositivos electrónicos se realiza a través de ondas electromagnéticas.
Cuanto mayor es la frecuencia de la onda, mayor es la cantidad de información que puede ser transmitida. Dado que la luz es también una onda electromagnética, cuya frecuencia es muy elevada, el flujo de información que transporta es, consecuentemente, muy superior al que se obtendría utilizando otros tipos de ondas.

Las fibras ópticas están formadas por dos elementos: un núcleo cilíndrico y una funda envolvente, denominada vaina. Ambos componentes se fabrican en vidrio, aunque siguiendo procesos distintos, puesto que es necesario que el índice de refracción difiera en uno y otro. El núcleo está formado por el vidrio más puro. Por éste viaja la luz. El revestimiento impide su propagación al interior del cable dirigiéndola sin distorsiones incluso en curvas. De este modo, la velocidad a la que viajan las ondas es distinta en el núcleo y en la vaina. La mezcla del vidrio con materiales impuros determina las variaciones en el índice de refracción, éste consiste en que cuando un haz de luz que se propaga por un medio ingresa a otro distinto, una parte del haz se refleja mientras que la otra sufre una refracción, es decir un cambio de dirección del haz. Para esto se utiliza el llamado índice de refracción del material, que nos servirá para calcular la diferencia entre el ángulo de incidencia y el de refracción del haz (antes y después de ingresar al nuevo material). El índice de refracción del material con el que está fabricada caracteriza a la fibra.


El diámetro de una fibra óptica oscila entre los 10 y los 100 micrómetros (un micrómetro equivale a la millonésima parte de un metro); la unión de fibras ópticas determina la formación de haces que pueden ser rígidos o flexibles, y transmitir tanto la luz como imágenes o informaciones, dependiendo de las aplicaciones. Han sido mejoradas para llevar varias longitudes de onda de la luz en la misma fibra, lo que incrementa enormemente su capacidad de comunicación.

Ventajas

  1. Las principales ventajas de este conductor son su reducido grosor y la gran efectividad que demuestra en la transmisión de datos.

  2. No sufre alteraciones electromagnéticas (contrariamente a lo que les sucede a los cables convencionales de cobre).

  3. Pueden incluirse en un cable contenedor muchísimas fibras ópticas sin pérdidas en la transmisión aunque la conexión esté separada por decenas de kilómetros.

  4. Como el medio para transmitir los datos es la luz, permite una mayor velocidad en la transmisión a larga distancia.

  5. Hay de diferentes grosores, desde el equivalente a un cabello humano hasta unas 10 veces más delgado.

Aplicaciones

  1. En medicina, hizo posible la invención del endoscopio, que permite iluminar, en cirugías, zonas pequeñas en el interior del cuerpo humano.

  2. En la industria y la mecánica brindó las mismas posibilidades de iluminación que en la medicina: facilitó la llegada a lugares difíciles como turbinas o artefactos con zonas oscuras.

  3. En las telecomunicaciones aumentó las velocidades y la calidad de llamadas telefónicas, internet y otras formas de conexiones. Une continentes con cables transoceánicos.

  4. Aparecen fibras ópticas en diferentes objetos de decoración, como árboles de navidad.

  5. En algunas edificaciones se diseñan originales alternativas de iluminación, lo que permite un bajo consumo de energía.

  6. Los cables de fibra óptica también se utilizan como sensores en la medición de temperatura, presión, tensión y también en sismos.

En 1964 Stewart Miller, de los Laboratorios Bell, dedujo maneras detalladas de demostrar el potencial del cristal como medio eficaz de transmisión a larga distancia. Aunque en la industria y en la medicina ya se utilizaban filamentos delgados como el pelo para transportar luz a distancias cortas y a lugares que de otra forma serían inaccesibles, la luz perdía normalmente hasta el 99% de su intensidad al atravesar distancias tan cortas como 9 m.


En 1966, Charles Kao y George Hockham, de los Laboratorios de Standard Telecommunications en Inglaterra, afirmaron que se podía disponer de fibras de transparencia mucho mayor. En un artículo demostraron que las grandes pérdidas características de las fibras existentes se debían a impurezas diminutas presentes en el cristal, principalmente agua y metales, en lugar de las limitaciones propias del cristal. Pronosticaron que la pérdida de la luz en las fibras podría disminuir enormemente de 1000 decibelios a menos de 20 decibelios por kilómetro. Con esta mejora, se podrían colocar amplificadores para aumentar la señal luminosa a intervalos de kilómetros, en lugar de metros, a distancias comparables a las de los repetidores que amplificaban las señales débiles en las líneas telefónicas convencionales.

El artículo estimuló a una serie de investigadores para producir fibras de baja pérdida. El gran avance se produjo en 1970 en Corning Glass Works, cuando Donald Keck, Peter Schultz y Robert Maurer lograron fabricar con éxito una fibra óptica de cientos de metros de largo con la claridad cristalina que Kao y Hockham habían propuesto. Poco después, Panish y Hayashi, de los Laboratorios Bell, mostraron un láser de semiconductores que podía funcionar continuamente a temperatura ambiente, y John MacChesney y sus colaboradores, también de los Laboratorios Bell, desarrollaron independientemente métodos de preparación de fibras.

Instalaciones eléctricas residenciales - Donald Keck, Robert Maurer y Peter Schultz de Corning Glass Works

La primera prueba se realizó en AT&T en Atlanta en 1976. Los equipos de trabajo instalaron dos cables de fibra óptica, cada uno de los cuales medía 630 metros de largo y contenía 144 fibras, tirando de ellos a través de conductos subterráneos estándar, se requería que los cables pudieran sortear curvas cerradas. Para alivio de todos, no se rompió ninguna fibra durante la instalación, ni las curvas cerradas degradaron su rendimiento. El servicio comercial comenzó al año siguiente en Chicago, donde un sistema de fibra óptica transportaba voz, datos y señales de vídeo a través de 2.4 km de cables subterráneos que conectaban dos oficinas de conmutación de la compañía telefónica de Illinois, Bell Telephone Company.

Instalaciones eléctricas residenciales - Instalación de la primera red de fibra óptica en Chicago 1977

Estas actividades marcaron un punto decisivo, pues gracias a ellas se contaba con los medios para llevar las comunicaciones de fibra óptica fuera de los laboratorios de física al campo de la ingeniería habitual. Durante la siguiente década, a medida que continuaban las investigaciones, las fibras ópticas mejoraron constantemente su transparencia.

En 1980 las mejores fibras eran tan transparentes que una señal podía atravesar 240 km de fibra antes de debilitarse hasta ser indetectable. Si los mares del mundo fuesen tan transparentes, se podría navegar por las zonas más profundas del Pacífico y observar el fondo del océano tan fácilmente como el fondo de una piscina.

Una cuestión importante en el desarrollo de la fibra ha sido el perfeccionamiento de sus métodos de fabricación, por ejemplo, el cristal de sílice puro, sin ninguna impureza de metal que absorbiese luz, se fabricaba directamente a partir de componentes de vapor, con lo que se evitaba la contaminación resultante del uso convencional de los crisoles de fundición.

No obstante, un sistema de comunicaciones de nivel comercial necesitaba algo más que una buena fibra. Los láseres todavía no eran muy fiables y fallaban tras unas cuantas horas de funcionamiento. Además, aún no existía ninguna forma económica de producir láseres fiables en las cantidades requeridas.

Una vez más, era necesario recurrir al trabajo del laboratorio de investigación. Dos investigadores de los Laboratorios Bell, J.R. Arthur y A.Y. Cho, idearon un método diferente de desarrollo de cristales, llamado epitaxia de rayo molecular o MBE (del inglés Molecular-Beam Epitaxy). Epitaxia es el desarrollo de cristales de un mineral sobre la superficie de los cristales de otro mineral y el método MBE era tan preciso que permitía colocar una capa de material semiconductor de espesor medido en átomos. Al reducir los electrones y la luz que emitían, esta capa extremadamente fina demostró su gran eficacia para generar la actividad del láser a la vez que se utilizaba menos corriente eléctrica y, mejor aún, los nuevos dispositivos de MBE consiguieron tener una vida útil de 1 000 000 de horas.

En los primeros sistemas de fibra óptica, los amplificadores para regenerar señales débiles constituían un cuello de botella. Pero en 1985, en la Universidad de Southampton en Inglaterra, un físico llamado S.B. Poole descubrió una solución. Añadiendo una cantidad pequeña del elemento erbio al cristal utilizado en las fibras ópticas se podía construir un amplificador completamente óptico.

En 1988 se tendió el primer cable submarino entre Estados Unidos y Europa.

En 1991, los investigadores de los Laboratorios Bell demostraron que un sistema completamente óptico tendría una capacidad de transporte aproximadamente cien veces superior a la que se podía lograr con amplificadores electrónicos. Los primeros cables totalmente ópticos comenzaron a funcionar en 1996 a través del Atlántico y en el Pacífico.

El premio Nóbel de Física 2009 fue otorgado al físico chino Charles Kao. "Nadie en su sano juicio pensó que se podría enviar una señal a través del cristal", dijo el historiador Robert Colburn, que entrevistó a Kao para el IEEE en 2004. "Kao desafió el saber convencional de la época prediciendo que se podría hacer el cristal lo suficientemente puro. La gente decía: 'No se puede ver a través de un vidrio de un pie de espesor, mucho menos en uno de mil kilómetros de largo.'"

Instalaciones eléctricas residenciales - Charles Kao

A pesar de todo, Kao perseveró en su teoría, y cuatro años más tarde, estas fibras se producían por Corning, en el estado de Nueva York. Hoy en día las fibras ópticas transmiten datos a velocidades asombrosas. Bell Labs rompió el récord de transmisión vía fibra óptica, enviando el equivalente de 400 DVD por segundo a 7000 kilómetros, superando a los cables submarinos comerciales por un factor de 10. Sin la tecnología desarrollada por Kao no existiría internet ni las comunicaciones telefónicas en la magnitud y a los precios que las tenemos en la actualidad.

En México hubo una licitación por la concesión del par de hilos de fibra óptica oscura propiedad de CFE, el cual tiene capacidad suficiente para absorber la demanda de servicios de telecomunicaciones del país por los próximos diez años.

De acuerdo con el director de estudios en regulación del ITAM, Ramiro Tovar Landa, el par de hilos de fibra oscura es suficiente para transmitir 800 megabits por segundo (Mbps). Esa capacidad es equivalente a cursar 50 millones de llamadas telefónicas simultáneas o soportar 400 000 enlaces dedicados, que permiten sostener conexiones permanentes a internet.

En la actualidad se han colocado más de 1000 millones de kilómetros de fibra óptica en todo el mundo, lo que, si se los uniera, equivaldría a dar 25 000 vueltas al mundo. Las fibras ópticas de vidrio cargan con casi la totalidad del tránsito de comunicaciones telefónicas y de datos en el mundo.

Indiscutiblemente, el progreso ha sido notable y rápido. Sin embargo, se vislumbran avances aún más impresionantes en el horizonte. Aunque los sistemas de fibra óptica actuales funcionan como líneas troncales, transportando un gran número de canales de voz y datos entre centrales telefónicas, los especialistas de la industria hablan con pesar de la "última milla": desde la centralita hasta los hogares. El sistema telefónico actual atraviesa esta última milla con equipos de hilo de cobre convencionales, que proporcionan buenas conexiones de voz, pero todavía no están capacitados para transportar grandes cantidades de datos a gran velocidad.

Acerca de fibra óptica experimental, varias que contienen cristales fotónicos y otras estructuras inusuales prometen enviar aún más datos a través de internet. Los cristales fotónicos, por ejemplo, redirigen la luz mucho más rápido que las fibras ópticas, haciendo posible la utilización de cristales para la orientación de la luz dentro de los microchips (fotónicos), lo que aumentaría la capacidad de cómputo de los mismos.

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más