Instalaciones Eléctricas Residenciales
Mostrando las entradas con la etiqueta sistema trifásico. Mostrar todas las entradas
Mostrando las entradas con la etiqueta sistema trifásico. Mostrar todas las entradas

Qué conductores del sistema de alimentacion deben conectarse a tierra

2021/08/24

Imagínense un mundo eléctrico lleno de sistemas de alimentación, ¡y cada uno con sus propias reglas! En la imagen que tenemos ante nuestros ojos, podemos ver los conductores que deben conectarse a tierra en los diferentes sistemas de alimentación, según nos enseña la sección 250-26 del Código. ¡Vamos a explorarlos juntos!

  1. Comencemos con el sistema monofásico de dos hilos. Aquí, uno de los conductores se conecta a tierra. ¡Una conexión vital para asegurar la seguridad eléctrica

  2. Pasemos ahora al sistema monofásico de tres hilos. En este caso, uno de los conductores también se conecta a tierra. ¡Nunca subestimes la importancia de una buena conexión a tierra!

  3. Sigamos avanzando hacia el sistema polifásico con un alambre común a todas las fases. En este sistema, el conductor común se conecta a tierra. ¡Una forma inteligente de mantener todo en equilibrio!

  4. 4. Por último, llegamos al sistema polifásico del cual se deriva una fase con tres hilos. Aquí, el neutro se conecta a tierra. ¡Una conexión crucial para mantener todo en orden y seguridad!

Así que ahí lo tienen, aventureros eléctricos. Estos son los diferentes sistemas de alimentación y los conductores que deben conectarse a tierra en cada uno de ellos. ¡Explorar el mundo eléctrico nunca ha sido tan emocionante!

Cómo instalar el Neutro en conexiones trifásicas en delta con terminal de alto voltaje

2021/08/22

Descubre cómo instalar el Neutro en conexiones trifásicas en delta con terminal de alto voltaje. ¡Saludos, amantes de la electricidad! Hoy exploraremos el fascinante mundo de la conexión a tierra en los sistemas de alimentación eléctrica. En la imagen que acompaña este artículo, podemos observar diferentes configuraciones y cómo se aplica la reglamentación para el conductor conectado a tierra en cada caso. ¿Listos para adentrarnos en este apasionante tema? ¡Vamos allá!

En primer lugar, centrémonos en la conexión a tierra en sistemas trifásicos de alimentación en configuración delta con terminal de alto voltaje. En esta situación, es importante destacar que los conductores del sistema trifásico y el sistema monofásico de alumbrado se traen a la entrada de servicio por separado. Pero ¿qué ocurre con el conductor conectado a tierra? ¡Pues bien, se instala y canaliza junto con los conductores de alimentación hacia el dispositivo de desconexión de servicio y se une a la cubierta del tablero de servicio! Además, también llega al dispositivo de desconexión del servicio de alumbrado y se une a su cubierta. Ambos, conductor conectado a tierra y conductor de electrodo de tierra, utilizan el mismo sistema de conexión a tierra. ¡Una conexión sólida y confiable!

Pero eso no es todo, en la imagen también podemos apreciar otros métodos de conexión a tierra en un sistema trifásico en configuración delta de cuatro hilos en terminal de alto voltaje. En este caso, existen dispositivos de desconexión independientes para el sistema trifásico de potencia y el sistema monofásico de alumbrado. Además, los tres conductores de fase se instalan en un conducto o canalización. Y, por supuesto, el conductor conectado a tierra se une al conductor de electrodo de tierra y llega tanto al servicio de alimentación como al servicio de alumbrado. ¡Una conexión completa y segura!

Ahora, es importante tener en cuenta que la regla básica para la conexión a tierra se aplican únicamente a sistemas que están sólidamente conectados a tierra. Y según la reglam básica, el conductor conectado a tierra debe llegar a cada entrada de servicio o dispositivo de desconexión de servicio. Está permitido que un tablero tenga hasta seis dispositivos de desconexión que estén ubicados dentro de una sola cubierta o gabinete. ¡No se deja nada al azar en materia de seguridad!

Y cuando se trata de instalaciones con múltiples dispositivos de desconexión, el Código establece una excepción en la sección 250-24(b). Esta excepción permite que el conductor conectado a tierra llegue a la cubierta de un tablero general de distribución y se una a ella. ¡Una forma eficiente y práctica de manejar la conexión a tierra en sistemas complejos!

Selección del conductor conectado a tierra


Para seleccionar el calibre del conductor conectado a tierra, el Código nos brinda pautas claras. Si el conductor conectado a tierra se utiliza como conductor de circuito, se selecciona de acuerdo con el artículo 220 del Código. Pero ¿qué sucede cuando el conductor conectado a tierra no se utiliza como conductor de circuito? En ese caso, la sección 250-24(b)(1) nos proporciona las reglas para seleccionar el calibre del conductor conectado a tierra. ¡Una guía precisa para garantizar la eficiencia y seguridad de nuestras instalaciones eléctricas!

Cuando el conductor conectado a tierra se utiliza como conductor de circuito, su calibre se selecciona según lo estipulado en el artículo 220 del Código. Este artículo nos brinda las pautas necesarias para garantizar una selección adecuada del calibre del conductor conectado a tierra. ¡Una información valiosa para asegurar el correcto funcionamiento de nuestros circuitos!

Pero eso no es todo, también debemos tener en cuenta las notas de la sección 230-24(b)(2) que nos remiten a la sección 310-4 del Código. Esta sección trata sobre los conductores instalados en paralelo. Y aquí viene lo interesante: el Código permite el uso de un conductor conectado a tierra de calibre 1/0 cuando los conductores se instalan en paralelo. ¡Una opción que nos brinda flexibilidad en nuestras instalaciones eléctricas!

Este requisito se aplica a dos tipos de instalaciones:

  1. Cuando el conductor conectado a tierra se usa como conductor de circuito.

  2. Cuando el conductor conectado a tierra no es un conductor de circuito, y se hace llegar hasta el tablero de servicio.

La sección 250-24(b)(1) menciona las formas para calcular el calibre del conductor conectado a tierra. Éstas son:

  1. La regla básica es consultar directamente la tabla 250-66 si el tamaño de los conductores de alimentación no supera los 1100 kcmil para conductores de cobre o los 1750 kcmil para conductores de aluminio. ¡Una forma sencilla y práctica de determinar el calibre adecuado!

  2. Si los conductores de entrada de servicio exceden los 1100 kcmil de cobre o los 1750 kcmil de aluminio, el calibre del conductor conectado a tierra no debe ser mayor al 12½% del tamaño del conductor de fase de mayor calibre. ¡Un cálculo simple pero crucial para garantizar la seguridad de nuestras instalaciones eléctricas!

  3. Cuando los conductores de fase se instalan en paralelo, el calibre del conductor conectado a tierra depende de la sección transversal total de cualquiera de las fases. ¡Un aspecto clave a tener en cuenta al realizar nuestras conexiones en paralelo!

En resumen, cuando los conductores de fase de entrada de servicio no exceden 1100 kcmil de cobre o 1750 kcmil de aluminio, se aplica la tabla 250-66.

Servicio trifásico en estrella con el punto central conectado a tierra


En la imagen que acompaña este texto, podemos observar un servicio trifásico en estrella con el punto central conectado a tierra. Lo interesante es que, en este caso, la carga consiste únicamente en equipos trifásicos, lo que significa que no se necesita el uso del neutro o conductor conectado a tierra. ¡Una situación que nos brinda una solución simple y eficiente!

Ahora, centrémonos en los conductores de fase de entrada de servicio, que tienen un tamaño de 500 kcmil de cobre. Para determinar el calibre del conductor de cobre conectado a tierra, podemos recurrir directamente a la tabla 250-66 del Código. ¡Una herramienta invaluable para nuestras necesidades eléctricas!

De acuerdo con la tabla 250-66, el calibre del conductor conectado a tierra necesario para el servicio de 500 kcmil es de número 1/0 para conductores de cobre. ¡Una información esencial para asegurar la correcta protección de nuestras instalaciones eléctricas! Si estuviéramos utilizando conductores de aluminio, el tamaño sería el mismo, número 1/0.

Sin embargo, es importante tener en cuenta que si los conductores de fase de entrada de servicio exceden los 1100 kcmil para conductores de cobre o los 1750 kcmil para conductores de aluminio, la tabla 250-66 no será suficiente para calcular el calibre del conductor conectado a tierra. ¡Aquí viene la clave para mantener el equilibrio!

En estos casos, el calibre del conductor conectado a tierra no debe exceder el 12.5% de la sección transversal total de cualquiera de los conductores de fase. ¡Una regla sencilla pero vital para asegurar la correcta protección de nuestras instalaciones eléctricas! Mantener este equilibrio nos garantiza un funcionamiento seguro y eficiente.

En la imagen que acompaña este texto, podemos ver un servicio con conductores de 600 kcmil por fase. Ahora, aquí viene la parte interesante: cuando sumamos los tamaños de los conductores de fase de entrada, obtenemos un total de 1800 kcmil por fase.

600 kcmil x 3 = 1800 kcmil por fase

¡Un número impresionante! Pero, ¿qué significa esto en términos de calibre del conductor conectado a tierra? Resulta que estos 1800 kcmil por fase superan el límite de 1100 kcmil de cobre establecido en la tabla 250-66. Pero no se preocupen, ¡aquí viene nuestro fiel aliado, el requisito del 12.5% para salvar el día!

Hagamos algunos cálculos sencillos: multiplicamos los 1800 kcmil por el 12.5% y obtenemos 225 kcmil.

1800 x 12.5% = 225 kcmil

Sin embargo, este no es un calibre estándar. Pero no se preocupen, tenemos una solución lista: La tabla 8 del Código muestra el área de conductores en cmil y se utiliza para convertir mil circulares en calibres de conductores estándar “AWG”, cuando se aplica la regla del 12.5%. En este caso los 225 kcmil exceden el calibre 4/0. Por lo tanto, seleccionamos el siguiente calibre disponible para conductores de cobre, que en este caso es de 250 kcmil. ¡Resuelto!

Ahora, ¿qué pasa si los conductores hubieran sido de aluminio y los tamaños de los conductores de entrada de servicio hubieran excedido el valor de 1750 kcmil? El procedimiento para calcular el calibre del conductor conectado a tierra sería exactamente el mismo. ¡La lógica sigue siendo la misma, independientemente del tipo de conductor!

Conductores del electrodo de tierra para sistemas de ca


Según la tabla 250-66 del Código Eléctrico, que lleva por título "Conductores del electrodo de tierra para sistemas de corriente alterna", se establece que el calibre máximo requerido para un conductor del electrodo de tierra es de 3/0 para conductores de cobre o 250 kcmil para conductores de aluminio.

Esto significa que cuando necesitamos aplicar la regla del 12.5% para determinar el calibre del conductor conectado a tierra, este puede ser mayor que el del propio electrodo de tierra para el mismo servicio. Sin embargo, nunca se requiere que el calibre del conductor conectado a tierra sea mayor que el de los conductores de fase.

Ahora, veamos un ejemplo práctico. En el circuito que se muestra en la imagen, utilizamos conductores del mismo calibre que mencionamos anteriormente. Sin embargo, en esta instalación particular, tenemos tres conductores en paralelo, cada uno con un conductor de fase y un conductor conectado a tierra. Es decir, los conductores conectados a tierra también están en paralelo.

600 Kcmil x 3 = 1800 kcmil por fase

Resulta que los 1800 kcmil por fase superan los 1100 kcmil para conductores de cobre que encontramos en la tabla 250-66. ¡Un verdadero desafío! No teman, porque hay una solución: la regla del 12.5% viene al rescate. Aplicando esta regla, podemos calcular el calibre del conductor conectado a tierra. Así que prepárense para hacer algunos cálculos y descubrir la respuesta.

12.55% de 1800 kcmil es 225 kcmil

Por lo tanto, debe existir un conductor conectado a tierra en cada uno de los tres conductores en paralelo.

225 kcmil dividido entre 3 = 75 kcmil o 75000 cmil

De acuerdo con la tabla 8 del Código, el siguiente calibre estándar para 75 kcmil es el 1. El calibre mínimo requerido para conductores en paralelo según la sección 250-24(b) y 310-4 es el número 1/0. Por lo tanto, cada uno de los conductores conectados a tierra, en paralelo, deben tener como mínimo un conductor de cobre de calibre 1/0.

Estos cálculos sólo se aplican cuando existe un sistema de alimentación que se conecta a tierra y el conductor conectado a tierra se lleva a la acometida pero no se usa como conductor de circuito. Cuando el conductor conectado a tierra se usa como conductor de circuito, entonces el conductor conectado a tierra se llama conductor neutro, de acuerdo con el artículo 220 del Código (Circuito ramal, y cálculos de servicio).

Conclusiones


En resumen, la conexión a tierra en los sistemas de alimentación eléctrica es esencial para garantizar la seguridad y el correcto funcionamiento de nuestras instalaciones. Ya sea en sistemas trifásicos, sistemas monofásicos o en instalaciones con múltiples dispositivos de desconexión, el conductor conectado a tierra desempeña un papel fundamental en la protección contra fallas y la canalización de corrientes. Siguiendo las normas y requisitos establecidos en el Código, podemos asegurarnos de tener conexiones a tierra confiables y eficientes.

¡Y hasta aquí llegamos con nuestro recorrido por el mundo de la conexión a tierra en los sistemas de alimentación eléctrica! Espero que hayan disfrutado de esta aventura informativa y que hayan aprendido algo nuevo. ¡Recuerden siempre priorizar la seguridad en sus instalaciones eléctricas!

¡Hasta la próxima, amantes de la electricidad!

Cómo conectar el neutro en sistemas trifasicos estrella

2021/08/21

Cómo conectar el neutro en sistemas trifasicos estrella. ¡Saludos, amantes de la electricidad! Hoy nos sumergiremos en el emocionante mundo de los interruptores de desconexión y la conexión a tierra en sistemas eléctricos. En la imagen que nos acompaña, podemos observar cómo se utilizan varios interruptores de desconexión para alimentar diferentes cargas y circuitos. ¿Quieres descubrir más sobre este intrigante tema? ¡Acompáñame en este apasionante recorrido!

En primer lugar, centrémonos en el interruptor de desconexión del alumbrado. Este interruptor suministra energía a una red de alumbrado que funciona a 120/208 voltios. ¿Qué ocurre con el conductor conectado a tierra en esta situación? ¡Pues bien, llega al interruptor de alumbrado y se extiende más allá del dispositivo de desconexión del servicio de alumbrado! Es importante asegurarse de que el neutro esté correctamente conectado y en perfecta armonía con los demás componentes del sistema eléctrico.

Pero eso no es todo. En la imagen también podemos apreciar dos interruptores adicionales que proporcionan alimentación de 208 voltios para otras cargas y circuitos. Y, por supuesto, el conductor conectado a tierra también tiene un papel importante en estos dispositivos. ¿Cómo lo sabemos? ¡Las cubiertas de cada interruptor se unen al conductor conectado a tierra! Esto asegura una conexión segura y confiable a tierra, evitando problemas y garantizando el correcto funcionamiento del sistema.

Así que, amantes de la electricidad, recuerden la importancia de los interruptores de desconexión y la correcta conexión a tierra en los sistemas eléctricos. Estos componentes garantizan la seguridad y el funcionamiento óptimo de nuestras instalaciones eléctricas. ¡Mantengamos la energía fluyendo de manera segura y eficiente!

Y hasta aquí llegamos con este recorrido por el mundo de los interruptores de desconexión y la conexión a tierra en sistemas eléctricos. Espero que hayan disfrutado de esta aventura informativa. ¡Nos vemos en nuestra próxima expedición eléctrica!

¡Hasta pronto, eléctricos entusiastas!

Mediciones en sistemas trifásicos desbalanceados

2013/11/08

Instalaciones eléctricas residenciales - Línea de distribución trifásica

La medición directa y el cálculo en sistemas trifásicos son dos formas de resolver o prevenir problemas en una instalación eléctrica.

En la mayoría de las ocasiones, en instalaciones trifásicas no se verifica el balance de cargas y esto repercute en el aumento de la factura por energía eléctrica, porque al alimentar una mayor cantidad de cargas con una sola fase elevamos el consumo.

El problema viene desde la distribución de cargas en las líneas de baja tensión, ya que -aunque se distribuyan de forma ordenada- algunos hogares cuentan con un mayor número de equipos alimentados; cuando se verifica el transformador es fácil detectar un desbalance de cargas, tal como se muestra en la siguiente imagen.

Instalaciones eléctricas residenciales - Distribución de cargas en sistema trifásico

Los problemas para el usuario son evidentes. ¿Pero, en qué afecta este fenómeno al sistema eléctrico? Un desbalance de cargas genera sobretensiones transitorias o picos de voltaje, armónicas y distorsiones en general, sobre la forma de onda eléctrica, adicional al daño físico que causa: calentamientos en conductores, degradación de aislamientos y envejecimiento en general de las líneas de transmisión y distribución eléctrica.

¿Cómo detectar un desbalance? La forma de poder determinar si las cargas están o no desbalanceadas es con medición directa, utilizando simplemente la función "amperímetro" de un multímetro de gancho, con el cual se mide sobre las fases existentes.

Se recomienda el uso del multímetro de gancho debido a que no es necesario abrir la línea de alimentación para realizar la medición; a diferencia del amperímetro normal con dos puntas, y el cual debe conectarse en serie con la línea.

Adicional a la medición directa, es importante determinar en términos matemáticos los parámetros eléctricos (si existen desbalances en el sistema).

En un sistema trifásico existen 3 fases más el neutro, a esta conexión se le conoce como trifásica a 4 hilos. Al compartir el neutro, a las cargas se les conoce como conexión en estrella, representada con un “Y”.

En un sistema trifásico, realizar una redistribución de cargas o balance de ellas permite reducir costos al mantener en operación similar a todas las fases.


Partiendo de esta idea, se sabe que por las leyes de electricidad -específicamente las de Kirchhoff- existen tensiones y corrientes de línea, así como una corriente adicional que tiene que ver con el neutro y por el cual no debe existir valor de corriente.

Ejemplo:

Instalaciones eléctricas residenciales - Diagrama de sistema trifásico en estrella

Aplicando la Ley de Ohm y un procedimiento matemático para números polares y no polares, se llega a los siguientes resultados:

NOTA IMPORTANTE: Al realizar este análisis se debe tener mucho cuidado, sobre todo si no sabes con exactitud la impedancia de las cargas, porque se puede llegar a resultados diferentes y equivocar el diseño. Así se obtiene una corriente resultante en el neutro después de aplicar la ley de corrientes de Kirchhoff en el neutro.

Instalaciones eléctricas residenciales - Cálculo de corriente de desbalanceo en el Neutro

En este punto es evidente que lo anterior es muy útil para el diseño, sin embargo cuando ya se tiene la instalación hecha y presenta calentamientos, caídas de tensión o picos de tensión transitoria, se utiliza medición directa.

Como parte del monitoreo que debe comprender un plan de mantenimiento, es posible incluir en el sistema eléctrico equipo que permite recabar información para analizar con detenimiento y proceder entonces a una posible reconfiguración o ampliación de la instalación. Los dispositivos más usados son los analizadores o medidores. Estos elementos funcionan de forma similar al medidor de CFE, pero la conexión no es tan similar, ya que es necesario entregar una señal de referencia e instalar transformadores de corriente o TC´s a cada fase para determinar los consumos derivados de un posible desbalance de cargas.

Instalaciones eléctricas residenciales - Analizador/Medidor de líneas trifásicas

Físicamente los medidores se instalan cerca de los tableros de distribución y en ocasiones es posible enlazarlos hacia la red por medio de cable UTP, llegando a los centros de monitoreo que permiten el análisis en tiempo real de corriente, potencia en sus tres tipos, tensión de alimentación, factor de potencia, entre otros.

Estas dos formas de determinar un posible desbalance de cargas no se contraponen debido a que el cálculo matemático aplica para diseño, y la medición directa para situaciones donde la instalación ya existe y se pagan cantidades muy altas por el consumo de energía. Es decir, uno prevé esta situación y otro permite programar acciones para minimizar el efecto; uno es una acción preventiva y otro es una acción correctiva.

Instalaciones eléctricas residenciales - Analizador/Medidor junto a centro de carga

En resumen, si la instalación esta en fase de proyecto, se recurre al cálculo; cuando la instalación ya existe se utilizan equipos de medición y análisis de parámetros eléctricos.

El siguiente video nos muestra un ejemplo del cálculo de un sistema trifásico desequilibrado con conductor neutro:


Carga desequilibrada en sistema trifásico conectado en estrella

2013/06/27

Instalaciones eléctricas residenciales - Líneas de distribución aérea

La importancia de tener cargas balanceadas conectadas a los sistemas trifásicos radica en que evitan serios problemas de operabilidad. El principal: desbalance en las tensiones de la fuente de suministro, ya sea el propio generador o bien la salida de un transformador.

La energía eléctrica se produce en centrales generadoras de distintos tipos: hidroeléctricas, geotérmicas, nucleares, entre otras. En ellas se hacen girar turbinas por golpe de agua o vapor, dependiendo de la central; en el caso de las nucleares el funcionamiento es a través de reactores. La transformación de movimiento mecánico a energía eléctrica se logra con la interacción de las turbinas como rotor del generador. Después de ello, se pasa por transformadores elevadores de tensión y se envía por las torres de transmisión; en ocasiones llega a subestaciones elevadoras para compensar la pérdida de tensión debida a la longitud e impedancia de las líneas de transmisión. Posteriormente llega a subestaciones reductoras o de distribución que bajan el nivel de tensión y envían la tensión reducida a las líneas de distribución que son los tres conductores que vemos en los postes fuera de nuestros domicilios y que se encuentran por arriba de los transformadores de distribución, en ellos se conecta el primario del transformador de distribución y salen 4 conductores a la red de distribución en baja tensión.

Debido a que los devanados del secundario del transformador de distribución están conectados en estrella, tenemos entonces 3 fases y 1 neutro. Es en este punto donde nuestro hogar recibe el suministro de energía eléctrica, a través de la acometida que -como sabemos- tiene un solo hilo de dos polos concéntricos: el desnudo corresponde al neutro y el aislado al cable de fase. Como era de esperarse, las cargas (vistas desde el sistema de distribución) son nuestros hogares; actualmente cada uno es distinto de otro.

Entremos pues en materia: los sistemas trifásicos desbalanceados con cargas conectadas en delta o en estrella, son objeto de un cuidadoso estudio porque ocasionan problemas desde el punto de vista de operación de los sistemas.

El desequilibrio o desbalance que se presenta se debe a que las impedancias por fase son diferentes, o porque los voltajes de línea o de fase difieren entre ellos en magnitud. La simetría que se presenta en los sistemas trifásicos balanceados no se establece para el caso de los sistemas desbalanceados.

Vamos a estudiar los sistemas desbalanceados considerando cargas conectadas en estrella, esto debido a que solo se ha tratado el caso de cargas balanceadas.


Los sistemas desequilibrados con carga en estrella de 4 hilos, que obviamente tienen el conductor del neutro, transporta la corriente de desbalance y mantiene la magnitud del voltaje de línea a neutro a través de las fases de la carga. Lo anterior lo estudiaremos usando el Diagrama 1.

Instalaciones eléctricas residenciales - Diagrama de sistema trifásico de cuatro hilos en estrella

La notación polar se representa con una magnitud asociada a un ángulo: Z = a∠bº. Las operaciones directas con esta representación son la multiplicación y división, la suma y resta debe hacerse con calculadora o pasando a la forma trigonométrica:

Z = a'± jb' , donde a' = acosb y jb' = asenb.

Antes de continuar con el análisis explicaremos brevemente las notaciones anteriores. Cuando se tiene una carga conectada a un sistema, esta puede estar formada de cargas individuales, tal como ocurre en un domicilio donde tenemos televisores, licuadoras, planchas, refrigeradores, microondas, teléfonos inalámbricos, computadoras, bombas de agua, etcétera. El efecto de cada carga se manifiesta de distinta forma, por ejemplo: si conectamos una plancha, el factor de potencia es aproximadamente la unidad; es decir, la energía se aprovecha casi en su totalidad a diferencia de una licuadora, donde su factor de potencia es menor a la unidad y no aprovecha de buena forma la energía que se le suministra. A la primera carga se le denomina carga puramente resistiva y a la segunda se le conoce como carga predominantemente inductiva. Para hacer un análisis de las cargas es necesario representarlas de forma matemática, es por ello que se usa una notación matemática conocida como números complejos en forma polar, de esta manera podemos sumar el conjunto de cargas y representarlas como una sola conectada por cada fase.

Dicho lo anterior continuemos con el análisis; la fuente generadora presenta secuencia positiva ABC y la tensión de fase de 120 V, se desea conocer todas las corrientes de línea considerando la tensión de fase EaN como referencia a cero grados. De tal forma que las tensiones de fase son:

Instalaciones eléctricas residenciales - Tensiones de fase en sistemas trifásicos

Para determinar las corrientes de línea consideramos las tensiones de fase y sus correspondientes impedancias, aplicando la Ley de Ohm tenemos que:

Instalaciones eléctricas residenciales - Cálculo de corrientes de línea en sistemas trifásicos

La corriente por el hilo neutro se obtiene aplicando la Ley de Corrientes de Kirchhoff en el punto
común de la estrella, por lo tanto es:

Instalaciones eléctricas residenciales - Cálculo de corriente en neutro de sistema trifásico conectada en estrella

De este resultado es importante mencionar que, en este caso, el desequilibrio de las cargas origina
una corriente que circula por el hilo neutro, lo cual contraviene a los principios de cero corriente
en el neutro en la conexión en estrella.

La secuencia de las fases de una fuente trifásica puede tener dos secuencias: positiva, que sigue el movimiento de las manecillas del reloj, de forma que las fases se ordenan como ABC y la negativa, en sentido contrario a las manecillas del reloj quedando como CBA.

Instalaciones eléctricas residenciales - Central generadora de energía eléctrica

Sistema trifásico en estrella

2013/06/18

La conexión del sistema trifásico en estrella es la que se encuentra en la red del sistema forma en que se suministra la energía eléctrica en los hogares debe ser en configuración estrella ya que se genera el neutro en el lado secundario del transformador y de esta manera en las acometidas se tiene el par formado por fase y neutro.

Antes de iniciar con esta tercera parte, recordaremos brevemente lo presentado en la edición anterior. Como recordarás, se analizó de manera simple la conexión Δ, la cual generalmente se encuentra en el devanado primario o lado de alta del transformador, describimos lo correspondiente a las tensiones de línea (EL) que son iguales entre sí y corresponden al potencial existente entre fases. Las corrientes de fase (IF) se determinan con la tensión de línea y el valor de la impedancia aplicando la ecuación simplificada de Ohm (IF = EL/Zu).

Asimismo mencionamos la existencia de otras corrientes en la conexión Δ, que son las corrientes de línea (IL), cuyo valor se obtuvo de un breve análisis matemático partiendo de la geometría del diagrama fasorial de corrientes.

Repasado lo anterior entremos de lleno con la conexión en estrella (Y).

La función principal del transformador de distribución es bajar una tensión de entrada a otra de salida, en el caso del tema que estamos tratando la tensión de salida es aproximadamente de 127 V. La conexión de los devanados del lado secundario o de baja es en estrella (Y). La razón es simple, sin embargo, usaremos el siguiente diagrama para ilustrarlo:

Instalaciones eléctricas residenciales - Diagrama de conexión del lado secundario de un transformador de distribución

Como es posible apreciar, se conecta una terminal de cada devanado con los demás para formar un nodo común, de esta manera se genera automáticamente el neutro. En la mayoría de los casos el neutro se conecta a tierra por medio de un conductor de cobre hasta la varilla de tierra instalada al pie del poste. A este conductor lo conocemos como conductor de puesta a tierra y al neutro como puesto a tierra.

Instalaciones eléctricas residenciales - Electrodo de puesta a tierra en poste de transformador

A fin de hacer otro análisis de tensiones y corrientes, cambiaremos los devanados de la configuración Y por fuentes senoidales de tensión. Es posible hacer esta sustitución debido al comportamiento de un devanado, en otras palabras: cuando se acerca un campo electromagnético a un conductor enrollado en forma de bobina, se da un fenómeno de inducción, el cual es posible medir directamente en las terminales del conductor, ya que existe una diferencia de potencial. La forma en que se construyen los transformadores varía, sin embargo, los devanados de alta y baja siempre están juntos, por lo que el fenómeno de inducción existe.

Por lo anterior podemos decir que la conexión de los devanados de lado de baja es una conexión en estrella de fuentes de tensión.

Instalaciones eléctricas residenciales - Representación de conexión en Y de los devanados del secundario de transformador de distribución

A continuación mostraremos y describiremos las corrientes de línea (Ia, Ib, Ic ), corrientes de fase (Iab, Ibc, Ica), tensiones de línea (Eab, Ebc, Eca ) y tensiones de fase (EaN, EbN, EcN ).


Las corrientes de línea son las que se generan de la fase de alimentación hacia la carga. Corrientes de fase son las que se presentan entre fases. Tensiones de línea, las que existe entre las fases de la conexión Y. Tensiones de fase son las que existen entre el punto común o neutro, y fase.

Observando el siguiente diagrama entenderemos mejor los conceptos anteriores, cabe mencionar que la carga debe cumplir con la característica de estar balanceada, es decir los valores de impedancia (Z) deben ser iguales, de tal forma que ZA = ZB = ZC.

Instalaciones eléctricas residenciales - Conexión en configuración estrella (Y-Y) del secundario del transformador y cargas

En realidad la característica de carga balanceada existe solo en sistemas controlados, en redes de distribución en baja tensión la carga por lo general está desbalanceada, ya que los equipos y aparatos dentro de una vivienda varían con respecto a otra.

Continuemos con el análisis de esta conexión en Y con una carga balanceada también conectada en Y, a esta conexión la llamamos conexión Y-Y.

Como ya se mencionó anteriormente, las corrientes de línea (IL) son las que se generan en el conductor de conexión de la carga, las identificamos con los subíndices correspondientes de la fase, en el caso de la conexión con la carga balanceada son las mismas, es decir: IL = Ia = Ib = Ic. También podemos decir que las corrientes de línea son las que se generan en cada fase en relación con el neutro.

Las corrientes de fase se generan en las cargas conectadas a las fases y dependen del valor de la carga; del mismo modo, si la carga es balanceada, las corrientes de fase son iguales entre sí: IF = Iab = Ibc = Ica.

Las tensiones de línea son iguales entre sí, tomando como principio que los devanados del transformador y la inducción del primario sobre el secundario es exactamente la misma, por lo cual: EL = Eab = Ebc = Eca. La tensión de fase es la diferencia de potencial que hay entre el neutro (N) y fase, siguiendo la idea de que son sistemas balanceados: EF = EaN = EbN = EcN.

De las EL y EF podemos decir que las primeras son mayores con respecto a las segundas en un 73.2% aproximadamente. Esto debido a que están afectadas por una 3 , resultado de un análisis de un diagrama fasorial, similar al que se realizó en el número anterior. Por lo tanto: EL = 3 EF, además de que existe un desfasamiento entre ellas de 30º.

Veamos el siguiente diagrama fasorial:

Instalaciones eléctricas residenciales - Diagrama fasorial de tensiones de fase y línea

En este diagrama podemos observar los desfasamientos que existen entre las tensiones de fase y tensiones de línea. Del desarrollo del diagrama fasorial tenemos lo siguiente:

La tensión de fase (EaN)se toma como referencia, por lo tanto no tiene ángulo de desfasamiento, así que podemos representarla de la siguiente manera: EaN = EL∠0º ; la otra tensión de fase EbN sí tiene un desfasamiento de 120º respecto a la de referencia, entonces se representa de la siguiente manera: EbN = EL∠120º , lo mismo ocurre con la tensión de EcN , que está desfasada 120º con respecto a la EbN y 240º con respecto a EaN, que es la de referencia; por lo tanto la representamos así: EcN = EL∠240º o bien EcN = EL∠ −120º .

Análisis del circuito trifásico conectado en delta

2013/06/07

El uso de un sistema trifásico en instalaciones eléctricas residenciales está siendo cada vez más socorrido, ya que con una instalación monofásica frecuentemente se superan los tipos de consumo establecidos por la CFE, por lo que la facturación aumenta.
Las líneas de distribución que están soportadas en postes y llegan a los transformadores de distribución. Si observas los cables que se conectan a las boquillas del transformador de distribución, notarás que son únicamente tres conductores, correspondientes a las tres fases del sistema de distribución de media o baja tensión, y en la salida hay cuatro conductores. Esto se debe a que la conexión del primario es trifásica a tres hilos, por lo general en conexión delta (Δ), y en el secundario es estrella (Y) a cuatro hilos.
La conexión delta (Δ) se realiza en el primario del transformador, los devanados deben conectarse en serie formando la Δ y se conecta una fase en cada punto de unión entre los devanados.

Instalaciones eléctricas residenciales - Conexión en Delta
Diagrama de conexión en Δ de los devanados primarios del transformador

Haremos un pequeño análisis de tensión y corriente en la conexión Δ.
Como se puede apreciar en el diagrama, la conexión en Δ no posee neutro, una vez entendido esto trabajaremos con tres fases. Los devanados del transformador los tomaremos como impedancias ZAZB y ZC del mismo valor, ya que el sistema siempre debe estar balanceado.
Para entender mejor el análisis usaremos el siguiente diagrama:

Instalaciones eléctricas residenciales - Análisis de circuito en Delta

Dadas las condiciones anteriores es posible hacer las siguientes afirmaciones:
La tensión de línea (EL) es igual para todas las fases, por lo tanto EL = |Eab| = |Ebc| = |Eca| y, como mencionamos anteriormente, las impedancias también son iguales entre sí, es decir: ZA = ZB = ZC, debido a ello y para facilitar su representación las identificaremos como una sola impedancia: Zu.
Las corrientes son sencillas de calcular dado que IAB = Eab/Zy, dado que las tensiones e impedancias son iguales, las corrientes también lo serán, entonces IBC = Ebc/Zu ICA = Eca/Zu
A estas corrientes se las conoce como corrientes de fase (IF).
La corriente de línea (IL) es la que va del punto de alimentación al punto de conexión con la carga, por ejemplo, la que existe entre el punto a y el punto de conexión A, su valor es la diferencia de las corrientes de fase IAB e ICA , es decir, IaA = IAB - ICA . Las otras corrientes de línea se determinan de la misma manera, aquí vale la pena observar bien la ecuación, habíamos dicho que las tensiones son iguales entre sí, lo mismo ocurre con el valor de las impedancias, debido a ello las corrientes también serán iguales, entonces… ¿el valor de IaA debería ser cero?
La respuesta es: no, ya que existe un ángulo de desfasamiento de 30º entre las corrientes de línea y de fase, así mismo hay 120º entre las corrientes de fase.
Nos valdremos del siguiente diagrama para representar todo lo que se ha mencionado anteriormente:


A este tipo de representación, se le conoce como diagrama fasorial. El diagrama fasorial es una
representación gráfica por medio de vectores. Un vector es un segmento de recta que tiene magnitud, dirección y sentido.
Una vez construido el diagrama, analicemos sólo una parte de ella para demostrar que la corriente de línea no es cero.

Instalaciones eléctricas residenciales - Parte de diagrama fasorial de conexión en delta

Seleccionamos la correspondiente a la IaA al proyectar una línea perpendicular de IAB , hasta IaA. Notaremos inmediatamente que se forman dos triángulos iguales, esto resulta obvio ya que afirmamos que IAB e ICA son de igual magnitud, por lo tanto, IaA se divide en dos partes iguales con magnitud ½IaA:

Instalaciones eléctricas residenciales - Análisis de parte de diagrama fasorial de conexión en delta

Analicemos el triangulo formado por: IAB , IaA y el ángulo de 30º.

Instalaciones eléctricas residenciales - Análisis de vector de diagrama fasorial de conexión en delta

Aplicamos una relación trigonométrica con base en un ángulo conocido: cosƟ = Ca/h, para este caso el cateto adyacente (Ca), la hipotenusa h y el ángulo Ɵ serán: IaA, IAB y 30º respectivamente.
Aplicando en la ecuación trigonométrica queda de la siguiente forma: cos30º = ½IaA/IAB, no olvidemos que deseamos determinar el valor de la corriente de línea, por lo tanto, la despejamos: cos30º = ½IaA/IAB entonces IABcos30º = ½IaA , ordenando ½IaA = IABcos30º.
De esta ecuación es posible determinar el valor completo de IaA; queda de la siguiente manera: IaA = 2IABcos30º y con ello demostramos que el valor de la corriente de fase no es cero.
Bien, aprovechemos para determinar la ecuación simplificada de la corriente de línea, para ello haremos uso de la equivalencia cos30º = √3/2 . Sustituyendo en la ecuación anterior tenemos
que:

          IaA = 2IABcos30º = IaA = 2IAB√3/2 = IaA = √3IAB

Retomando los conceptos anteriores de corrientes de línea (IL) y de fase (IF), podemos afirmar que:

          IL = │IaA│=│IbB│ = │IcC│; e IF = │IAB│=│IBC│ = │ICA│.

Por lo tanto nuestra ecuación para determinar la corriente de línea es IL = √3IF .
En resumen, para un sistema trifásico equilibrado conectado en delta (Δ) y alimentado por una fuente balanceada:
  1. La tensión de línea es igual para todas las cargas:

  2. EL = │Eab│=│Ebc│ = │Eca

  3. La impedancia de las cargas es la misma:

  4. Zu = ZA = Z= ZC .

  5. La corriente de fase se calcula como:
  6. IF = EL/Zu

  7. La corriente de línea se determina con la ecuación simplificada:

  8. IL = √3IF .
Con esto terminamos el análisis de tensiones y corrientes en los devanados del primario del transformador de distribución, en una próxima entrada analizaremos la conexión en estrella (Y), que
corresponde al lado secundario del transformador y la conexión a una carga trifásica balanceada.

Nota: Cuando un número(s) se presenta encerrado(s) entre dos barras, indica que es un valor absoluto, o bien una magnitud que no está afectada por ningún signo.

La principal aplicación de los circuitos trifásicos

2013/05/29

Instalaciones eléctricas residenciales - Distribución aérea trifásica

Los sistemas reales de interconexión eléctrica se instalan disponiéndose en configuraciones trifásicas, bifásicas, monofásicas y en algunos casos hexafásicas, así que debemos aprender algunos conceptos que nos faciliten su entendimiento.

Un sistema polifásico es una serie de conexiones que requieren cierto número de conductores que transportan la energía en forma de corriente alterna a un nivel de tensión específico, para ello es necesario conocer las características de cada caso. En este artículo trataremos únicamente el sistema trifásico, teniendo en cuenta que es uno de los más comunes en nuestro país y en el desarrollo de nuestra actividad.

Antes de continuar con la explicación de los conceptos básicos de los circuitos trifásicos, hablaremos un poco de su historia, describiremos la operación de una central hidroeléctrica y mencionaremos los conceptos técnicos que definen al elemento encargado de hacer la conversión de energía, así como los parámetros de un circuito trifásico; el uso de estos sistemas será tema que trataremos en próximos números de esta revista. Comencemos entonces con un poco de historia.

En 1882, el inventor servio-americano Nikola Tesla, descubrió el principio del campo magnético rotatorio, el cual hizo posible la invención de la maquinaria de corriente alterna. El descubrimiento del campo magnético rotatorio producido por las interacciones de corrientes de dos y tres fases en un motor fue uno de sus más grandes logros y sirvió como base para la creación del motor de inducción y del sistema polifásico de generación y distribución de electricidad.

Gracias a esto, grandes cantidades de energía eléctrica pueden ser generadas y distribuidas eficientemente a lo largo de grandes distancias, desde las plantas generadoras hasta las poblaciones a las que alimentan. Hasta estos días se sigue utilizando la forma trifásica del sistema polifásico de Tesla para la transmisión de la electricidad, además, la conversión de electricidad en energía mecánica es posible gracias a las versiones mejoradas de los motores trifásicos de Tesla.

La principal aplicación para los circuitos trifásicos se encuentra en la distribución de la energía eléctrica por parte de la compañía de luz a la población. Nikola Tesla probó que la mejor manera de producir, transmitir y consumir energía eléctrica era usando circuitos trifásicos.

En Mayo de 1885 George Westinghouse, cabeza de la compañía de electricidad Westinghouse, compró las patentes del sistema polifásico de generadores, transformadores y motores de corriente alterna de Tesla.

En octubre de 1893 la comisión de las Cataratas del Niágara otorgó a Westinghouse un contrato para construir la planta generadora en las cataratas, la cual sería alimentada por los primeros dos de los diez generadores que Tesla diseñó. Dichas dinamos de 5000 caballos de fuerza eran las más grandes hasta ese momento construidas. General Electric registró algunas de las patentes de Tesla y consiguió un contrato para construir 22 millas de líneas de transmisión hasta Búfalo. Para este proyecto se utilizó el sistema polifásico de Tesla. Los primeros tres generadores de corriente alterna en el Niágara se pusieron en marcha el 16 de noviembre de 1896.

En algún momento hemos escuchado el término generación y de alguna manera tenemos una idea de su significado y funcionamiento, así que sin ahondar mucho en conceptos técnicos, describiremos la generación de energía eléctrica en una central hidroeléctrica.

Como sabemos, la mayor cantidad de la energía producida en México se deriva de las centrales hidroeléctricas, que son más de 60 en todo el país. La tecnología de las principales instalaciones se ha mantenido igual desde el siglo pasado. Las centrales dependen de un gran embalse de agua contenido en una presa. El caudal de agua se controla y se puede mantener casi constante.

El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales. El diseño de las turbinas depende del caudal de agua; las turbinas Francis se utilizan para caudales grandes y saltos medios y bajos, y las turbinas Pelton para grandes saltos y pequeños caudales.

Además de las centrales situadas en presas de contención que dependen del embalse de grandes cantidades de agua, existen algunas centrales que funcionan con la caída natural del agua de caudal uniforme, éstas se denominan centrales de agua fluente, de este tipo es la central de las Cataratas del Niágara.

Dentro de la central generadora, el elemento que realiza la conversión de energía mecánica a eléctrica es el generador, cuya operación se describe de la siguiente manera:

La conversión comienza al hacer girar una espira rígida con velocidad constante (ω) dentro de un campo magnético uniforme, el flujo (φ) que corta la espira tendrá una variación senoidal y, en consecuencia, se induce una fuerza electromotriz (FEM) de forma senoidal; a este conjunto de elementos se le conoce como generador.

Instalaciones eléctricas residenciales - Generador de corriente alterna

Para demostrar lo anterior desarrollaremos la ecuación:

φ = BS cos ωt

donde φ es el flujo magnético, B es el campo magnético, S es el vector superficie y cosωt es el ángulo debido a la velocidad angular (ω) en un tiempo (t).


De lo anterior podemos determinar la tensión e , con base en la siguiente relación y aplicando la derivada al flujo magnético.
Instalaciones eléctricas residenciales - Determinación de la tensión eléctrica en un sistema trifásico

De esta forma demostramos que el movimiento de la espira da como resultado una FEM senoidal.

Ahora bien, si en lugar de tomar una espira se toman tres espiras iguales y se montan en un mismo eje formando ángulos de 120º entre sí, al hacer girar las espiras con velocidad constante (ω) dentro del campo magnético, se inducirá en cada espira una FEM igual a:

    e1= EM senωt
    e2= EM senωt + 1200
    e3= EM senωt + 2400

Los ángulos de 120º y 240º se deben a la configuración de los devanados en el eje y con respecto a la primera espira. Por otro lado, la corriente se obtiene conectando una carga a cada espira, la forma de esta será también senoidal. Las expresiones matemáticas que se tienen son:

    i1= IMsen(ωt+φ1)
    i2= IMsen(ωt+1200+φ2)
    i3= IMsen(ωt+2400+φ3)

Donde φ es el desfase entre corriente y tensión en cada fase. El conjunto de estas tres corrientes o tensiones iniciales constituyen un sistema trifásico equilibrado de corrientes o tensiones.

Instalaciones eléctricas residenciales - Gráfica de un sistema trifásico

Esta configuración presenta varios inconvenientes, pues se necesita un complejo sistema de colectores y escobillas para poder recoger las tensiones producidas.

Actualmente los tres devanados se encuentran soportados en el estator, mientras que el rotor está imantado o lleva un electroimán para generar el campo magnético, este rotor es la parte móvil del alternador.

Los generadores modernos con los devanados soportados en el estator son más económicos y fiables que los alternadores antiguos. Los generadores cuyo rotor lleva un electroimán son alimentados con una fuente de corriente continua para activar el electroimán y poder generar el campo magnético.

Instalaciones eléctricas residenciales - Diagrama de generador trifásico

Como se puede observar en la imagen del generador, la distancia entre los centros de los devanados es de 120°, gracias a ello se obtienen tres señales alternas diferentes y distanciadas entre sí 120°:

A la salida del generador están las conexiones de las subestaciones elevadoras de voltaje, éste pasa directamente a la red de transmisión trifásica a través de conductores montados en torres, después llega a una subestación reductora y sale nuevamente a la red de distribución por conductores en postes hasta los transformadores que llevan la energía eléctrica a nuestros domicilios.

Si las cargas se encuentran distribuidas de manera balanceada las corrientes debidas a los voltajes del circuito también lo estarán, de esta forma se logra un circuito trifásico balanceado.

Así es como se genera la energía eléctrica por medio de una central hidroeléctrica. En próximas entradas trataremos lo correspondiente a los circuitos trifásicos de manera más detallada.

9 pasos para calcular el suministro de energía de una vivienda.

2010/04/02

Instalaciones eléctricas residenciales - Acometida

El método de cálculo para determinar el suministro de energía de una viviendas se encuentra descrito en el artículo 220 de la NOM-001-SEDE-2012. Para las instalaciones eléctricas residenciales, se describe a continuación:
  1. El primer paso consiste en determinar la potencia aparente (VA, voltamperes) para la carga de alumbrado. Ésta se obtiene a partir del área habitable de la vivienda; para ello se puede hacer un levantamiento físico de las dimensiones de los espacios que no deje margen a error, aunque también se puede tomar de los planos arquitectónicos si se cuenta con ellos.

    La carga mínima de alumbrado por cada metro cuadrado de superficie del piso, debe ser de 33 VA/m², según se especifica en la Tabla 220-12, para unidades de vivienda. El área del piso de cada planta debe calcularse a partir de las dimensiones exteriores de la vivienda. El área calculada del piso no debe incluir los patios abiertos, las cocheras ni los espacios no utilizados o sin terminar, que no sean adaptables para su uso futuro.

  2. El artículo 220-52(a) de la NOM-001-SEDE-2012 establece que se deben considerar 1500 voltamperes por cada circuito derivado para aparatos pequeños en la cocina, utilizando al menos 2 circuitos para este fin.

    El artículo 220-52(b) indica que se debe considerar una carga de cuando menos 1500 voltamperes para el circuito de la lavadora. Conviene agregar en este punto también 1500 VA para el circuito del baño. Se permite que estas cargas se incluyan con la carga de alumbrado general y se apliquen los factores de demanda correspondientes.

  3. Las salidas de contactos que no estén colocadas en las áreas habitables, y que se pudieran necesitar en el exterior, se deben calcular con base en 180 voltamperes por salida, según el artículo 220-14(l) de la NOM-001-SEDE-2012.

  4. Se deben sumar las cargas por alumbrado, por aparatos pequeños y por salidas de contactos en el exterior.

  5. Si utilizamos directamente esta suma de cargas para realizar el cálculo de la acometida, sería como considerar que todas las salidas eléctricas se utilizaran al mismo tiempo. En la práctica no se encienden todas las lámparas ni se hacen funcionar todos los aparatos electrodomésticos al mismo tiempo, por lo tanto la demanda de energía suele ser menor a la carga total conectada. Esta relación entre la demanda máxima y la carga total conectada de un sistema eléctrico se suele llamar factor de demanda.
    Para continuar con el cálculo se debe aplicar el factor de demanda permitido por el artículo 220-40, y que para unidades de vivienda se encuentra establecido de esta manera:


  6. Para todos los aparatos en salidas especiales, es decir, los aparatos que estén fijos en su sitio, conectados permanentemente o localizados para conectarlos a un circuito específico, se debe tomar el valor nominal de la placa de datos. Esto incluye equipos como calentadores eléctricos de agua, bombas de agua, regaderas eléctricas y equipos de aire acondicionado.

  7. El valor de la suma de estas cargas especiales se agrega al valor de la carga parcial obtenida anteriormente después de aplicar el factor de demanda. Este valor final es la carga total para determinar el suministro de energía eléctrica de la vivienda.

  8. Si la instalación eléctrica es nueva, este valor nos permitirá escoger la mejor opción para el circuito de alimentación y el servicio que se deba contratar. Si la instalación ya existe o corresponde a una ampliación o remodelación de la vivienda, debemos comparar la carga dada por el cálculo con la clasificación de potencia aparente del servicio eléctrico ya existente en la vivienda. Si la carga es inferior a la del servicio contratado, el sistema es seguro. De lo contrario, el servicio debe ser actualizado.

  9. Recuerda que para servicio monofásico de dos hilos (120 V) la carga máxima es de 4800 VA, para servicio monofásico de tres hilos (240 V) la carga máximas es de 9600 VA, y para servicio trifásico de cuatro hilos (220 V) la carga máxima es de 15320 VA.


La siguiente imagen muestra un ejemplo del cálculo de una vivienda utilizando un formato para facilitar el análisis de las cargas.


El siguiente formato se encuentra vacío para que lo puedas imprimir y utilizar, si necesitas determinar el tipo de suministro de energía que más le convenga a tu instalación.

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más