Instalaciones Eléctricas Residenciales

Desperdicio de energía eléctrica en México

2013/11/04

Instalaciones eléctricas residenciales - Botón de encendido y LED de un aparato electrónico

Aunque en los últimos años México ha logrado importantes avances en materia de ahorro de energía eléctrica, persisten graves distorsiones en prácticamente toda la cadena de la actividad económica, que provocan desperdicio de electricidad.

Estudios oficiales revelan que anualmente se pierde aproximadamente 15% de la electricidad que se produce a nivel nacional, incluida la generada por productores externos o privados. Es decir, de 266 mil 450 Gigawatts Hora (GWh) que se generan, aproximadamente 39 mil 967 se desperdician tanto por procesos productivos ineficientes, como por el uso de tecnologías obsoletas y hasta por el robo del insumo.

El problema es serio, porque la electricidad que se desperdicia equivale al consumo que realizarían 5.4 millones de mexicanos con contrato de conexión al servicio público de energía eléctrica.

Diversas voces indican que la situación actual exige cambiar la forma en que se produce y consume la energía eléctrica, para garantizar un desarrollo económico sustentable, al mismo tiempo que se satisfacen las necesidades por medio del uso racional de los recursos y de las tecnologías.

La Secretaría de Energía reconoce la importancia de este tema como centro de una política energética sólida y sustentable. Si bien es cierto que se pueden llevar a cabo un sinfín de acciones encaminadas a impulsar el uso eficiente de la energía –por ejemplo migrar a sistemas de iluminación ahorradores, promover la sustitución de electrodomésticos de elevado consumo del recurso, instalar motores y bombas de alto rendimiento en la industria, establecer códigos de construcción que fomenten una utilización racional de la energía y expandir los sistemas de recuperación de calor industrial– es indispensable la participación de todos los actores, desde el propio generador, la Comisión Federal de Electricidad (CFE), hasta el último consumidor.

De acuerdo con el estudio Costo-Beneficio de Proyectos de Eficiencia 2012, elaborado por la CFE, la única empresa estatal generadora de electricidad afronta un problema de ineficiencia y obsolescencia de sus equipos (tienen una antigüedad superior a los 25 años), lo que provoca que se desaproveche energía eléctrica en las áreas de generación, transmisión y distribución.

Actualmente, el área de generación está desaprovechando 6.2 millones de Kilowatts Hora (kWh), que equivalen a 10.4 millones de pesos anuales; en las áreas de transmisión, seis millones de kWh, con un costo de 7.9 millones de pesos; en distribución, 1.9 millones de kWh, que representan 4.2 millones; y, en las instalaciones del Programa de Ahorro de Energía del Sector Eléctrico (PAESE), un total de 11 mil 943 Kwh que equivalen a 42 mil 875 pesos anuales.


A nivel de los usuarios domésticos, el Instituto de Investigaciones Eléctricas (IIE) asevera que en México existe una clara tendencia a la saturación de los equipos electrodomésticos existentes en las viviendas del país, lo que explica el aumento en el uso de energía eléctrica en el sector residencial.

El organismo advierte sobre uno de los problemas en los que incurren con mayor frecuencia los usuarios: el relacionado con la llamada “energía o potencia en espera” de los diferentes aparatos, la cual se define como la potencia eléctrica demandada por un equipo conectado ininterrumpidamente, mientras éste se encuentra apagado o no desarrollando su función (cuando los pequeños focos rojos continúan encendidos).

El consumo por potencia en espera representa aproximadamente 10% del consumo total de energía eléctrica en el sector residencial, porcentaje que es absorbido principalmente por la televisión, los equipos de cómputo, así como los estéreos.

Esto sugiere la importancia de seguir implementando normas de eficiencia energética en los principales electrodomésticos utilizados en el país. De hecho, el sector vivienda es el segundo consumidor de electricidad más importante de México, con 25% del total, sólo después de la industria, que emplea 57% de la energía eléctrica que se comercializa.

Esta es la razón por la que organismos como el Instituto del Fondo Nacional de la Vivienda para los Trabajadores (Infonavit) estableció, a partir de este año, la obligación de hacer construcciones verdes otorgando un sobre crédito de entre 15 mil y 36 mil pesos para adquirir eco-tecnologías; es decir, equipos que ayuden a ahorrar energía eléctrica, gas y agua.

El beneficio esperado es evitar el desperdicio y generar ahorros a los acreditados que van de los dos mil 800 a los cuatro mil 500 pesos anuales en la facturación correspondiente, lo que ayudaría a mitigar el problema del desperdicio de electricidad en el país.

Así, tanto el sector industrial, el residencial, el comercio y los servicios tienen un área de oportunidad en el ahorro eléctrico.

El siguiente video expone los principales puntos a considerar en el ahorro de energía eléctrica así como la disminución en el recibo de CFE:


2 tipos de redes subterráneas en México

2013/11/01

Instalaciones eléctricas residenciales - Refinería "Dos Bocas" en Tabasco
Con un grupo de líneas configuradas podemos crear una red de distribución, conformada de elementos que son indispensables para su buen funcionamiento.

Una línea subterránea es aquella que se constituye por uno o más conductores aislados, que forman parte de un circuito eléctrico, colocados bajo nivel de suelo, ya sea directamente enterrados, en ductos o en cualquier otro tipo de canalización.

En una entrada anterior hablamos de los lugares donde se instalan este tipo de redes de distribución: instalaciones que cumplen con las normas de la Comisión Federal de Electricidad, porque este tipo de obras, en su mayoría, son donadas a la CFE para su operación y mantenimiento, con el fin de garantizar un servicio de calidad en el suministro de energía eléctrica.

A continuación daremos a conocer los tipos de configuración de redes en media tensión que se aplican en nuestro país:

1. Configuración en Anillo


Es aquella red que cuenta con más de una trayectoria entre la o las fuentes y la carga, para proporcionar el servicio de energía eléctrica.


Al tener más de dos fuentes de alimentación, garantizamos que el suministro de energía será constante. Esto no quiere decir que las dos fuentes de energía no puedan estar trabajando de manera simultánea, porque al presentarse una falla en algún lado de la alimentación, se aísla la fuente por medio de equipos de desconexión y se garantiza el suministro de la energía eléctrica.

Instalaciones eléctricas residenciales - Diagrama de red subterránea con configuración en anillo


2. Configuración Radial


Cuenta con una trayectoria entre la fuente y la carga. En este sistema la corriente eléctrica circula en una dirección y es alimentado por una sola fuente de energía. La desventaja es que al presentarse una falla queda todo el sistema sin alimentación eléctrica. Actualmente la tecnología nos ofrece ventajas con equipos más modernos, permitiéndonos diseñar una red más eficiente y segura, que cuenta con medios de desconexión que ayudan a aislar la zona de falla, garantizando el suministro de la energía.

Instalaciones eléctricas subterráneas - Diagrama de red subterránea con configuración radial

Las instalaciones subterráneas son un tema muy complejo, del que daremos a conocer las bases para que sigas desarrollando tus conocimientos en cuestiones eléctricas. En el siguiente número, hablaremos de los tipos de sistemas constructivos de redes eléctricas, así como de los materiales y equipos que los componen.

El siguiente video complementa información sobre sistemas de redes de distribución eléctrica:


26 consejos para el embobinado de un motor de inducción

2013/10/31

Instalaciones eléctricas residenciales - Motores eléctricos

Cuando un motor eléctrico es diagnosticado con daños severos (devanados quemados o en cortocircuito), es necesario sustituir sus devanados. Te recomendamos seguir estos pasos:

  1. Registra el motor en una bitácora de reparaciones; pon especial atención en los datos de identificación: datos de placa, referencias o información de fallas proporcionadas por el propietario; así como daños visibles o partes rotas (hazlas notar al propietario).

  2. Antes de abrir el motor, marca apropiadamente ambas tapas y el estator para que al volver a armar queden exactamente en la posición en que estaban. Puedes utilizar un punzón o punto de golpe, o un marcador permanente. Realiza dos marcas en un extremo del motor y cuatro en el otro, para diferenciarlas.

  3. Afloja los tornillos y procede a abrir el motor, separando las tapas de forma pareja para que no se dañen los rodamientos y asientos de rodamientos.

  4. Corta bobina por bobina de un lado del estator y extraélas por el lado contrario, hasta terminar ambos devanados (arranque y trabajo). Es importante que registres los pasos polar y de bobina, así como el número de espiras (vueltas) y calibre del alambre magneto. El alambre más delgado es el devanado de arranque.

    NOTA: Realiza el diagrama desarrollado de los devanados, en el que se dibujan las ranuras y la posición de las bobinas, para volver a colocar los devanados nuevos de la misma manera.

  5. Limpia perfectamente el estator y el núcleo magnético. Es necesario que retires restos de cobre, de aislamientos y barniz adheridos; puedes utilizar cuchillas o charrascas, lija, o bien removedor de pintura o solventes.

  6. Limpio el estator, verifica que no obstruye el libre giro del rotor, de lo contrario hay que lijar ambas superficies hasta que el giro sea libre.

  7. Aplica una mano ligera de praimer anticorrosivo o barniz rebajado para proteger el estator por dentro.

  8. Toma dimensiones del núcleo magnético, el largo y perímetro de la ranura, para cortar los aislamientos, que puede ser de un material como el maylard (mica) o de algún papel aislante como el papel pescado o coreco; el primero es mejor, aunque más caro.

  9. El aislamiento debe medir el perímetro de la ranura pero su longitud debe ser por lo menos 2 centímetros mayor (1 cm de cada lado), por el doblez que lleva, que lo sujeta al núcleo magnético.


  10. Es recomendable cortar un sólo aislamiento y hasta que quede perfecto dentro de la ranura, tomarlo como modelo para cortar todos los demás.

  11. Coloca todos los aislamientos en las ranuras observando que no sobresalgan dentro del estator, para evitar que atasquen al rotor.

  12. Toma un trozo de alambre de reciclaje y saca la muestra del tamaño requerido para las nuevas bobinas. Puede obtenerse de las bobinas que retiraste, si no tienes experiencia.

  13. Realiza las bobinas necesarias, con alambre magneto del calibre y número de espiras correspondientes. Puedes hacerlas en devanadora o a mano.

  14. Empieza a colocar las bobinas en el estator, iniciando en la bobina menor de un polo, hasta terminarlo, y después pasa al polo vecino embobinando en sentido contrario para que sea de polaridad contraria al primero. Siempre inicia un polo en la bobina más pequeña. Si es de más de dos polos, continúa embobinando cada polo siempre en sentido contrario al anterior, para que tengan polaridades alternadas.

    Instalaciones eléctricas residenciales - Sentidos para el embobinado de motor eléctrico

  15. Una vez terminado el devanado de trabajo, realiza estas pruebas: de continuidad, falla a tierra y polaridad.

  16. Si supera las pruebas, procede a aislar y sacar las terminales de trabajo; y arma el motor.

  17. Utiliza una piola enrollada en la flecha; arranca el motor mientras que lo energizas a 127 V (de manera similar a como se arranca un motor de lancha).

  18. Si no arranca o hace mucho ruido y no desarrolla su velocidad, desenergiza de inmediato, de lo contrario se quemará. Repite el paso anterior aplicando más fuerza.

  19. Si arranca bien, mide la corriente y voltaje. La corriente debe ser por lo menos un 30 por ciento menor que la corriente de placa.

  20. Si la corriente que demanda no es correcta, suspende la prueba, desarma y analiza la causa del error: en la conexión, en la polaridad, en el calibre del conductor o en el número de espiras. De existir alguno de los errores mencionados, deberás corregir para poder continuar.

  21. Si la corriente que demanda es correcta, suspende la prueba. Desarma y continúa con el devanado de arranque, siguiendo el mismo criterio que con el de trabajo. Al iniciar la primera bobina, ésta deberá estar colocada de tal forma que la división entre dos polos de trabajo sea el centro de ella.

  22. En cuanto termines el devanado de arranque, realiza pruebas de polaridad. De estar bien, lleva a cabo las conexiones definitivas y amarra con hilo cáñamo (de algodón o lino) ambos devanados.

  23. Una vez amarrado y moldeado el embobinado, procede a armar el motor y repite la prueba de operación. En este caso ya no es necesaria la piola, ya que el devanado de arranque sustituye esta función.

  24. Superada la prueba del paso anterior, desarma y procede a aplicar una capa generosa de barniz dieléctrico al embobinado, en un lugar abierto y ventilado, teniendo cuidado de que en el perímetro interior del núcleo no queden gotas de barniz, que puedan atascar al rotor cuando esté funcionando. Es válido aplicar dos capas delgadas de barniz (que puede ser para secado al aire o secado en horno).

  25. Antes de armar el motor, hay que dejar que seque perfectamente en un lugar ventilado (por lo menos 18 horas, dependiendo de la calidad y viscosidad del barniz). Si se tiene horno, puede secar en unas tres horas a una temperatura de 60º C. No es recomendable aplicar mayor temperatura.

  26. Una vez secos los devanados, procede a armar el motor para aplicar la última prueba de operación, teniendo especial cuidado en la corriente, ruido, par y vibración. Si hay demasiada vibración puede ser necesario sustituir rodamientos o mandar a balancear el rotor. Si la operación es aceptable, el motor es dado de alta para su servicio.

El siguiente video nos muestra el procedimiento para el cálculo, elaboración de esquema y bobinado de motor monofásico de 3.000 r.p.m.:


3 puntos para revisar en la verificación de las instalaciones eléctricas residenciales

2013/10/30

Instalaciones eléctricas residenciales - Maqueta de una vivienda

Al realizar la inspección final en instalaciones eléctricas residenciales, asegúrate que el inmueble
cuente con un plano o croquis, y que éste muestre la instalación eléctrica actual, de lo contrario debe generarse de forma completa. Si se cuenta con este documento verifica que esté actualizado, esto se puede corroborar confirmando la ubicación del centro de carga, contactos, interruptores y salidas de lámparas.

Una vez realizados los pasos anteriores, el siguiente es realizar un levantamiento. Para ello, utiliza el plano mencionado, comenzando por verificar que la instalación de la preparación parar recibir el servicio de energía eléctrica sea la adecuada, tal y como lo solicita CFE. Desde el exterior encontrarás el lugar donde se originan o deberían originarse los circuitos derivados, este punto es sumamente importante, ya que es una combinación de comodidad pero sobre todo de seguridad y continuidad del servicio; es decir, qué pasaría si el centro de carga o tablero de distribución no existiera y se originara una sobrecarga en un contacto. La respuesta parece obvia: se tendría una condición insegura que comprometería a los equipos electrónicos conectados a todo el sistema, tomando en cuenta que todos las derivaciones parten del mismo punto.

1. Centro de carga


El centro de carga servirá para distribuir todos los circuitos derivados de una instalación eléctrica y para protegerlos de una una falla por sobrecarga y, con los nuevos ITM de operación rápida, hasta de un cortocircuito.

Instalaciones eléctricas residenciales - Instalador inspeccionando un centro de carga

Otros puntos importantes en la verificación de un centro de carga son:

  • Que esté instalado firmemente a un muro en caso de ser del tipo sobrepuesto, o estar bien emboquillado y no tener movimiento, en el caso de ser empotrado. Recuerda que la NOM 001 vigente indica que cuando el equipo eléctrico se monta en superficies de ladrillo, concreto, yeso o en materiales similares, los taquetes dentro de los orificios no deben ser de madera.

  • Limpio de polvo, grasas y que no presente evidencia de salpicaduras o corrosión.


  • Que esté completo y no presente chiqueadores removidos que permitan la introducción de objetos desde el exterior.

  • Si la fijación de la tapa es por medio de tornillos, éstos deben ser sin punta y de una longitud pequeña suficiente para unir el cuadro con la tapa de forma firme.

  • Que no se conecten dos circuitos a un mismo termomagnético.

  • No exista una protección de capacidad igual o mayor a la de la principal.

  • El centro de carga debe contar con un supresor de picos instalado. Para ello la instalación en general debe contar con tierra.

  • Que no esté expuesto a la intemperie a menos que haya sido diseñado para esta condición; aquí cabe hacer nuevamente otra aclaración entre intemperie y exterior. Un equipo designado para intemperie ofrece protección contra agua y polvo al cumplir con la característica de hermeticidad y rayos UV, por el tipo de material; a diferencia de un equipo designado para exterior, que soporta salpicadura de agua, polvo regular, pero experimenta degradación paulatina por causa de los rayos UV. Las acciones a tomar en estos casos pueden ir desde instalar, reubicar, sustituir o dar mantenimiento al centro de carga.

2. Cajas de empalme


La instalación eléctrica debe tener cajas de empalme (generalmente de 3/4") que permitan conectar o derivar los alimentadores provenientes del centro de carga. El material de construcción tiene que ofrecer alta resistencia a la degradación incluso en ambientes muy salinos, para este caso en específico las cajas de 3/4" de son la mejor opción, ya que son las más resistentes en su tipo, cuentan con una profundidad adecuada para realizar empalmes, postes aislados que evitan perforar accidentalmente los conductores, lo que puede originar un riesgo de choque eléctrico, cortocircuito o fuga de corriente. En cada habitación tiene que contarse con una caja de empalme o registro, como también se le conoce. Aunque en muchas ocasiones las colocan en la losa, el mejor lugar es el muro, a una altura que no sea accesible a menores.

Instalaciones eléctricas residenciales - Caja de empalmes

Los empalmes dentro de estas cajas deben estar firmemente aislados con cinta. Recuerda que, en muchas ocasiones, al tener falsos contactos aumentamos el consumo de energía eléctrica debido a las fugas de corriente, y combinando los chispazos (arcos eléctricos) con una posible fuga de gas puede presentarse un accidente.

3. Tubería


El tubo conduit de polietileno, como , es una canalización semirrígida, corrugada y flexible, con sección transversal circular, y sus correspondientes accesorios aprobados para la instalación y protección de conductores eléctricos. Está compuesto de material que es resistente a la humedad, y dependiendo del tipo, puede tener o no retardante a la flama.

Instalaciones eléctricas residenciales - Tubos conduit de polietileno

Resulta importante calcular el diámetro correcto de la tubería, ya que además de proteger a los conductores de posible humedad, asegura la ventilación y permite sustituir conductores sin el riesgo de dañar a los que permanecerán instalados. En construcciones existentes, es obvio que no es posible ranurar, por ejemplo, una losa para instalar más tubería. Para este caso en específico, se recomienda ranurar la pared y usar salidas para lámpara con cajas de 1/2", e instalar lámparas tipo arbotante. En muchas ocasiones, a petición del cliente, se realiza una remodelación con muro y techo falso, esto facilita el trabajo y elimina por completo el problema del ranurado. En este tipo de instalación utiliza tubo conduit de polietileno con retardante a la flama.

El siguiente video nos muestra un ejemplo de inspección final de una instalación eléctrica:


Sistemas solares fotovoltaicos según el artículo 690 de la NOM-001-SEDE-2012

2013/10/29

Instalaciones eléctricas residenciales - Paneles solares

Un sistema fotovoltaico es un conjunto de elementos que transforman la radiación del sol en energía eléctrica de generación limpia. Requiere de uno o varios inversores que convierten la tensión eléctrica en corriente directa, que entrega un arreglo de paneles solares a tensión en corriente alterna y poder interconectarla a la red de suministro eléctrico de CFE. Esto a grandes rasgos es un generador fotovoltaico.

El artículo 690 aplica a sistemas eléctricos de energía solar fotovoltaica (FV), incluidos los arreglos de circuitos, inversores y controladores. Estos sistemas pueden ser interactivos con otras fuentes de producción de energía eléctrica o autónomos, con o sin almacenamiento de energía eléctrica, como baterías, además pueden tener salidas de utilización de corriente alterna o de corriente continua para distintas cargas, y usarlo de forma directa.

Un arreglo es un ensamble de módulos o paneles con una estructura y bases de soporte, sistema de orientación y otros componentes, según se necesite, para formar una unidad de generación de energía eléctrica de corriente continua, conectada al inversor que cambia una entrada de corriente continua en una salida de corriente alterna. Los inversores también pueden funcionar como cargadores de baterías que emplean la corriente alterna o directa de otra fuente, para realizar esta función.

Otro tipo de controlador es el conocido como de desviación de carga, que regula el proceso de carga de una batería, desviando la potencia del sistema de almacenamiento a las cargas de corriente alterna o de corriente continua, o a la red de suministro de CFE. Lo anterior es posible observarse de mejor forma en el siguiente diagrama.

Instalaciones eléctricas residenciales - Circuito de una fuente fotovoltaica

Al ser un sistema eléctrico, debe considerarse siempre la protección y el elemento que asegure que la energía no circulará en sentido contrario cuando se presente una falla; de esto se hablará más adelante.


La instalación tiene que hacerse de tal forma que los conductores del sistema solar fotovoltaico no se encuentren en las mismas canalizaciones, charolas porta-cables, cables, cajas de salida, cajas de empalme o accesorios similares, como conductores, alimentadores o circuitos derivados de otros sistemas no fotovoltaicos, a menos que los conductores de los distintos sistemas estén separados por una división. Cuando esto no sea posible, la NOM permite ubicarlos juntos, siempre y cuando los conductores estén agrupados e identificados en todos los puntos de conexión, terminación y empalme; lo anterior aplica tanto al sistema o sistemas fotovoltaicos, como las salidas y entradas del inversor.

El siguiente video nos habla sobre la forma de hacer la selección y el cálculo de los conductores para los sistemas fotovoltáicos:


Un caso especial es cuando se tiene más de un sistema fotovoltaico cuyos conductores se instalan en la misma canalización, charola o porta-cable; en este caso los conductores de cada sistema deben ser agrupados por separado realizando un amarre en un punto y el siguiente a no más de 1.80 m, repitiendo esto en toda la longitud del cable, como se indica en la figura.

Instalaciones eléctricas residenciales - Agrupación y sujeción de conductores para sistemas fotovoltaicos

En el lugar donde se conecta el inversor y se interconecta a la red, debe colocarse un cartel indicando que hay tensión peligrosa y posible daño físico al contacto.

Otro aspecto importante en el diseño del sistema fotovoltaico es la selección de las protecciones y materiales, en este sentido el cálculo de la tensión máxima. La tabla 690-7 indica los factores de corrección de la tensión de salida del arreglo fotovoltaico. En esta ocasión no incluimos en este artículo dicha tabla debido a que presenta un error, sin embargo se deja la referencia para ser consultada. Este factor se aplica a la tensión medida en las terminales de salida sin carga, o como se conoce también a circuito abierto.

Hasta aquí dejaremos el tema por esta ocasión; en una próxima entrada hablaremos de la forma en que se calculan los circuitos y protecciones del sistema fotovoltaico.

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más