Instalaciones Eléctricas Residenciales
Mostrando las entradas con la etiqueta voltaje. Mostrar todas las entradas
Mostrando las entradas con la etiqueta voltaje. Mostrar todas las entradas

Cómo realizar la puesta a tierra en sistemas de 50V a 1000V

2021/08/08

Descubre cómo realizar la puesta a tierra en sistemas de 50V a 1000V. El Código de Electricidad tiene identificados algunos sistemas específicos de distribución eléctrica y las situaciones en las que se requiere una conexión a tierra. ¡Pero eso no es todo! También hay otros sistemas y situaciones en los que se permite realizar esta conexión. ¡Vamos a explorarlos de manera clara y sencilla!

La sección 250-20(b)(1) del Código establece que cuando un sistema puede ser conectado a tierra, el voltaje máximo a tierra en el conductor no conectado no debe exceder los 150 voltios. Ahora, echemos un vistazo a las imágenes que ilustran las tres aplicaciones más comunes de esta regulación. Estas son situaciones en las que el electricista se encuentra con mayor frecuencia.

La primera imagen muestra un sistema monofásico de 120 voltios de dos hilos. Aquí, uno de los conductores se conecta intencionalmente a tierra y el voltaje a tierra no supera los 150 voltios. Este tipo de sistema se utiliza en servicios pequeños con un solo circuito ramal.

En la segunda imagen, vemos un sistema monofásico de 120/240 voltios de tres hilos. Aquí, el centro del devanado del transformador se conecta intencionalmente a tierra y se utiliza como conductor neutro. Nuevamente, el voltaje a tierra no excede los 150 voltios. Este sistema es ampliamente utilizado en servicios residenciales y áreas de oficinas que requieren tomas de corriente de 120 voltios.

La tercera imagen muestra un sistema trifásico de 120/208 voltios de cuatro hilos en configuración de estrella. El punto común se conecta intencionalmente a tierra y se utiliza como conductor neutro. Una vez más, el voltaje a tierra no supera los 150 voltios. Este sistema es comúnmente utilizado en oficinas, almacenes, centros comerciales, escuelas, iglesias y otros lugares similares.

En cada uno de estos sistemas, se requiere una conexión a tierra cuando el voltaje a tierra de los conductores no excede los 150 voltios. La sección 250-20 también establece que un sistema de 480/277 voltios debe ser conectado a tierra con un voltaje nominal trifásico de cuatro alambres, utilizando el conductor neutro como conductor conectado a tierra.

Estos sistemas de voltajes nominales también incluyen una configuración en estrella con el punto común conectado a tierra y utilizado como conductor neutro. La regla también se aplica a sistemas de 460/266 voltios y 440/254 voltios. Estos sistemas de alimentación son ampliamente utilizados en iluminación de escuelas, edificios altos y áreas industriales.

La sección 250-20(b)(3) se aplica a sistemas trifásicos de cuatro hilos conectados en delta, donde el punto medio de uno de los devanados del transformador se conecta intencionalmente a tierra y se utiliza como conductor neutro. A este sistema se le conoce como sistema trifásico tipo delta de 120/240 voltios, con cuatro hilos. Una de las fases tiene un voltaje a tierra más alto que las otras dos fases, pero es menor que el voltaje de fase a fase.

Según la sección 384-3(c) del Código, la fase B en la terminal de alto voltaje debe ser identificada con el color naranja. Algunos sistemas comunes que utilizan esta conexión son:

  1. El sistema de alimentación de 120/240 voltios con una terminal alta de 208 voltios.

  2. El sistema de alimentación de 110/220 voltios con una terminal alta de 190 voltios.

Puedes calcular fácilmente la terminal de alto voltaje multiplicando la mitad del voltaje de fase por 1.73:

    240/2 = 120 x 1.73 = 208 voltios

    220/2 = 110 x 1.73 = 190 voltios

Estos sistemas trifásicos de cuatro hilos se utilizan cuando se necesita energizar circuitos de potencia y alumbrado. Las tres fases se utilizan para fines de potencia y los 120 voltios se utilizan para la iluminación.

¡Ahora tienes una comprensión más clara de las conexiones a tierra y los voltajes nominales en los sistemas de distribución eléctrica! Sigue explorando y aprendiendo sobre estos temas para realizar instalaciones eléctricas seguras y eficientes.

Cómo realizar la puesta a tierra en sistemas menores de 50V

2021/08/07

Descubre cómo realizar la puesta a tierra en sistemas menores de 50V. Existen tres situaciones en las que los sistemas de alimentación de corriente alterna operan a voltajes menores de 50 voltios y se necesitan conectar a tierra. Vamos a explorar cada una de ellas de manera clara y sencilla para que puedas comprender cómo funciona este proceso.

  • La primera situación ocurre cuando tenemos un transformador suministrando un sistema y la fuente de suministro de ese transformador supera los 150 voltios a tierra. En este caso, el secundario del transformador debe ser conectado a tierra. Esto sucede, por ejemplo, cuando utilizamos un conductor de fase y el neutro de un sistema de 277/480 voltios para alimentar el primario del transformador, y el secundario de este suministra 48 voltios para operar válvulas solenoides u otros circuitos de bajo voltaje. En este caso, el secundario tiene menos de 50 voltios y el primario tiene más de 150 voltios a tierra.

  • La segunda situación se presenta cuando un transformador suministra un sistema y la fuente del transformador no está conectada a tierra, lo cual requiere que el secundario del transformador, aunque tenga menos de 50 voltios, sea conectado a tierra. Un ejemplo de esto ocurre cuando utilizamos una fase de un sistema de 480 voltios no conectado a tierra para alimentar el primario del transformador, y el secundario del transformador suministra un voltaje menor de 50 voltios.

  • La tercera situación ocurre cuando el sistema que opera a menos de 50 voltios se instala en postes fuera del edificio, y en este caso también es necesario conectarlo a tierra.

El Código es muy específico en relación a estas tres situaciones, pero también permite que otros sistemas de alimentación de corriente alterna que operan a voltajes menores de 50 voltios se conecten a tierra, dejando esta decisión en manos del electricista o ingeniero de diseño. Por ejemplo, cuando suministramos el primario de un transformador con 120 voltios, entregando un cable vivo y un neutro, y el secundario del transformador es de 32 voltios. En este caso, el voltaje del secundario es menor de 50 voltios y el voltaje suministrado por el transformador no excede los 150 voltios a tierra. Por lo tanto, el secundario de 32 voltios no requiere ser conectado a tierra, aunque está permitido realizar esta conexión si se desea.

Con esta guía práctica y detallada sobre la conexión a tierra en los sistemas de alimentación de corriente alterna, estarás preparado para tomar las decisiones adecuadas en tus proyectos eléctricos.

Principios de corriente alterna (parte 2)

2021/07/22

Principios de corriente alterna (parte 2)
Principios de corriente alterna (parte 2)

Principios de corriente alterna (parte 2). Anteriormente hemos visto que el circuito eléctrico es el medio por el cual se manifiesta la energía eléctrica en nuestras instalaciones eléctricas residenciales y nos sirve para canalizarla desde una fuente hasta las salidas conectaremos los diferentes aparatos electrodomésticos.

Principios de corriente alterna en el circuito eléctrico


La fuerza que pone en movimiento a los electrones libres a través de todo el conductor eléctrico del circuito se conoce como voltaje. Es el equivalente a la presión en las instalaciones hidráulicas. También se le conoce con otros nombres como tensión eléctrica o diferencia de potencial. Su unidad de medida es el voltio.

Los circuitos de una vivienda se conectan "en paralelo" con la fuente de energía, y de esa manera el voltaje prácticamente con el mismo valor a todas las salidas de la instalación.


La intensidad de la corriente eléctrica es el flujo de electrones libres a través del conductor eléctrico; también se le conoce como amperaje, ya que su unidad de medida es el ampere.
La potencia eléctrica es el trabajo que realizan los electrones libres en el interior de los aparatos electrodomésticos, al transformar la energía eléctrica en otras energías útiles al ser humano, como la luz, el calor y el movimiento.

Todos estos parámetros (voltaje, intensidad y potencia) están presentes en todos los circuitos eléctricos y se pueden medir, para que de esa manera, los podamos también controlar.

A continuación, te presento un vídeo que nos habla de los principios de corriente alterna (parte 2). Nos muestra las principales magnitudes eléctricas que se pueden medir en un circuito, y que están presentes en todas nuestras instalaciones eléctricas residenciales.


La energía eléctrica entra a la casa, pasa por el medidor, y luego por el interruptor principal. El voltaje está presente en los contactos instalados, cuya conexión se realiza en paralelo. Esto quiere decir que el mismo voltaje de 120 V ± 10% está presente en cualquiera de ellos. Y su punto de conexión es el mismo. Además, la corriente eléctrica varía de acuerdo a la carga conectada.

Intensidad de la corriente eléctrica


Los electrones libres son partículas pequeñísimas con carga negativa. Al conectar un aparato eléctrico o electrónico a contacto, los electrones libres se desplazan a través de los conductores de cobre (los cables). También en los dispositivos internos de los aparatos, como el motor que mueve las aspas de la licuadora, el compresor de un refrigerador, o el motor de una lavadora. Este flujo de electrones libres también se da cuando un dispositivo electrónico está funcionando gracias a una fuente de alimentación interna, como por ejemplo, una pila.

El flujo de electrones libres viaja en un sentido y luego en el otro, debido a los cambios de voltajes. A este flujo se le conoce como corriente eléctrica. Su intensidad se mide en amperes. El aumenta o disminuye en función del aparato conectado. Calentar una plancha requiere mayor intensidad de corriente que un foco. Un foco demanda menos de un ampere (1 A) de corriente. Mientras que una plancha demanda más de diez amperes (10 A). La plancha y el horno de microondas son los dispositivos domésticos que requieren mayor corriente.

Instalaciones eléctricas residenciales - principios de corriente alterna parte 2

Aplicación de los principios de corriente alterna


Para comprender mejor los principios eléctricos de voltaje y corriente, ejemplificando con una conexión en paralelo, se montan sobre una tabla o acrílico los portalámparas en paralelo. El cable rojo o cable de fase, se conecta al tornillo de la terminal pequeña de una clavija. El apagador debe conectarse en el conductor de fase. El cable blanco (neutro) debe conectarse a la terminal grande de la clavija. Al conectar la carga de unos focos ahorradores y operar el apagador, en el extremo de la conexión en paralelo se cerrará el circuito.

Potencia eléctrica


Otro parámetro que es necesario conocer es el de la potencia eléctrica. Se representa con la letra P y sus unidades son los watts. La potencia se calcula multiplicando el voltaje por la corriente (P = V x I). La mayoría de los aparatos especifican la potencia que requieren. Pero ¿qué corriente consumen? De la fórmula de potencial despejamos la corriente (I = P / V). Y con una simple división podemos determinar la intensidad de corriente que consumen los aparatos eléctricos y electrónicos en nuestra casa.

En el caso de un foco ahorrador de 13 watts, el consumo de corriente es menor a un ampere. Para el de la plancha es de casi 10 amperes. Esto es más de 50 focos ahorradores prendidos al mismo tiempo. Y una televisión consume 1.18 amperes. Esto es aproximadamente igual a lo que consumen 10 focos ahorradores encendidos al mismo tiempo.

Recuerda que la energía utilizada en los equipos de tu casa fue generada a kilómetros de distancia. Y sus parámetros son: voltaje, corriente eléctrica, potencia eléctrica, y frecuencia.

Ahora, ¿te queda alguna duda sobre los principios de corriente alterna (parte 2) presentes en las instalaciones eléctricas residenciales, y su relación con los circuitos en paralelo?

Si te gustó el artículo, el anuncio de este CURSO te puede interesar 👇
Inscríbete al curso *Principios de Instalaciones Eléctricas*

Voltaje o tensión ¿Cuál es el nombre correcto?

2021/07/12

Voltaje o tensión ¿cuál es el nombre correcto? - Instalaciones eléctricas residenciales

Voltaje o tensión ¿Cuál es el nombre correcto? Ambos términos se usan con frecuencia para expresar voltaje, diferencia de potencial, tensión o potencial eléctrico, los cuales en sentido estricto significan lo mismo, pues se refieren a la medición de la fuerza que puede poner en movimiento a los electrones libres en un circuito eléctrico. Cuando se hace referencia al voltaje entre dos puntos particulares de un circuito, es usual utilizar el término diferencia de potencial.

El diccionario de la Real Academia Española (RAE) define al voltaje como la cantidad de voltios que actúan en un aparato o en un sistema eléctrico. De esta forma, el voltaje, que también es conocido como tensión o diferencia de potencial, es la presión que una fuente de suministro de energía eléctrica o fuerza electromotriz ejerce sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado. Así se establece el flujo de una corriente eléctrica.


Diferencia de potencial entre dos puntos - Instalaciones eléctricas residenciales
Diferencia de potencial entre dos puntos

En la imagen se muestra la diferencia de potencial entre los puntos 2 y 3. En este ejemplo la diferencia de potencial entre ambos puntos es de 40 voltios. Cuando se instala un puente de unión entre los puntos 2 y 3, como se muestra en la misma imágen, la diferencia de potencial es cero. Al instalarse el puente de unión se logran dos objetivos:

Se mantiene el voltaje en ambos puntos.

Se le da a la corriente otra trayectoria de baja impedancia o de baja oposición al flujo de corriente.

Ver también: 3 categorías para medir la tensión eléctrica

Los dos puntos se han conectado mediante un puente de unión y ahora se encuentran en el mismo potencial. Los puentes de unión se usan para el sistema de puesta a tierra y el objetivo es mantener un mismo potencial del sistema.

En la imagen de abajo, los puntos 2 y 3 se encuentran situados en la misma tubería de metal y pueden considerarse como si estuvieran unidos entre sí. Por lo tanto, tienen el mismo potencial. El motor no está unido a estos puntos ni tampoco se ha conectado a tierra, sino que está aislado. No existe conexión eléctrica entre el armazón del motor y la tubería metálica.


Diferencia de potencial entre una tubería metálica aterrizada y un motor que no esta aterrizado - Instalaciones eléctricas residenciales
Diferencia de potencial entre una tubería metálica aterrizada y un motor que no está aterrizado

Voltaje o tensión ¿Cuál es el nombre correcto? ¿Cuál es el que tú utilizas en tu trabajo o en la vida diaria?

Por qué la energía eléctrica se transmite a voltajes elevados

2021/07/01

Por qué la energía eléctrica se transmite a voltajes elevados - Instalaciones eléctricas residenciales


¿Por qué la energía eléctrica se transmite a voltajes elevados? Para la transmisión de energía de plantas generadoras, más del 90% de todas las líneas eléctricas de alimentación llevan corriente alterna. En pocas aplicaciones se utiliza corriente directa en sistemas o redes de alimentación y alumbrado. Sin embargo, la corriente directa es importante en los circuitos electrónicos.

Existen muchas ventajas en el uso de corriente alterna pues es capaz de efectuar todo lo que no puede la corriente directa. Además, la transmisión de corriente alterna es más sencilla y económica. El voltaje se puede incrementar o disminuir sin que haya pérdida apreciable de potencia mediante el uso de transformadores.

En las estaciones generadoras de potencia, el voltaje se eleva mediante transformadores de elevación, y se distribuye a través de las líneas de transmisión. Luego, en el extremo opuesto de la línea de transmisión, otro transformador reductor reduce el voltaje a magnitudes que puedan usarse para alumbrado y alimentación.

La potencia transmitida por una línea de transmisión es el producto del voltaje (E) y la corriente (I) (P = EI). Para transmitir la potencia máxima es necesario que E x I sean tan grandes como sea posible.

El calibre del alambre utilizado limita la intensidad de corriente mientras que el aislamiento del alambre limita el voltaje. Es más fácil y económico fabricar una línea de transmisión con un aislamiento adecuado que permita el uso de un voltaje elevado, que fabricar un conductor de alambre capaz de transportar corrientes muy elevadas.

Ver también: Transmisión y distribución de la energía eléctrica

También existe una pérdida de energía en el alambre, la cual es proporcional al cuadrado de la corriente:

P = I2R

en donde P es la pérdida de energía y R es la resistencia del alambre.


¿Por qué la energía eléctrica se transmite a voltajes elevados?

Al utilizar un voltaje elevado se requiere menor cantidad de corriente para transmitir cierta cantidad de energía. La transmisión eficiente de energía demanda el uso de voltajes muy elevados.

Podemos ilustrar y analizar la utilización de transmisión de voltaje elevado y baja corriente por las empresas generadoras de energía eléctrica. Asimismo, podemos obtener un megawatt (un millón de watts) de dos formas, de acuerdo con la fórmula:

P = V x I

En donde V = voltaje

                 I = corriente

10,000 volts x 100 amperes = 1,000,000 watts

100,000 volts x 10 amperes = 1,000,000 watts

Si usamos la fórmula anterior de pérdida de energía P = I2R, podemos obtener lo siguiente, si consideramos una línea de transmisión de 10 ohms.

Para la línea de 10,000 volts y 100 amperes

P= (100)2 x 10 ohms = 100,000 watts

Para la línea de 100,000 volts y 10 amperes

P= (10)2 x 10 ohms = 1,000 watts

Se puede observar que la línea de transmisión con voltaje elevado tiene menores pérdidas que la de menor voltaje.

Por esta razón la energía eléctrica se transmite a voltajes elevados y baja corriente. Una planta generadora puede generar la energía a 10 KV y 100 A, elevarla por medio de transformadores de elevación a 100 KV y 10 A para transmitirla a lo largo de áreas geográficas y en una subestación disminuirla con transformadores de reducción de nuevo a 10 KV y 100 A, para la distribución en áreas comerciales y residenciales. De nuevo, cerca de la residencia, en el transformador del poste, se reduce a los voltajes conocidos (120, 240, etcétera).

¿Conocías la razón de por qué la energía eléctrica se transmite a voltajes elevados?

El valor rms o eficaz de una onda senoidal

2021/06/30

El valor rms o eficaz de una onda senoidal se obtiene fácilmente. Se toma la raíz cuadrada del cuadrado promedio de los valores instantáneos de un ciclo completo.

Cuando circula la corriente directa o la corriente alterna por un resistor, la energía eléctrica se convierte en calor. En el caso de la corriente alterna, la rapidez a la que se convierte la energía y se usa la potencia es menor que en el caso de la corriente directa. Esta corriente varía de forma continua entre valores máximos y cero. Y es menor que la corriente directa estable que tiene un valor igual al valor pico de la corriente alterna.

El método para relacionar la corriente alterna con la corriente directa es comparar el efecto de calentamiento de un resistor cuando circulan ambos tipos y corrientes con un valor máximo o valor pico iguales.


Entonces, el aumento de temperatura producido por la corriente alterna en el resistor se compara con el aumento de temperatura producido por la corriente directa. Y a partir de esta relación se puede calcular el valor efectivo y la potencia usada.

El valor eficaz o rms de la corriente alterna


La fórmula para determinar el efecto Joule de calor o potencia que disipa el resistor es:

P = I2R

La pérdida de potencia I2cd x R, producida por el flujo de 1 A (un ampere) de corriente directa, eleva la temperatura del resistor a 50°C. Mientras que en un circuito de corriente alterna, el calentamiento I2cd x R, causado por una corriente pico de 1 A, sólo asciende a 25°C. De tal manera que:

I2ca R = ½I2cd x R = ½I2max R
(corriente cd = pico ca)

I2ca = ½I2max

Ica = 1/(2xImax)1/2 = 0.707 Imax

O sea, El valor rms o eficaz de una onda senoidal de la corriente alterna sólo es 0.707 veces la pico. La corriente alterna tendrá que aumentar a Ica x 21/2 = (1.414 A) para generar el efecto de calentamiento de 1 ampere de corriente directa. De la misma forma, el voltaje pico es de 1.414 veces el valor eficaz o rms.

El valor rms o eficaz de una onda senoidal - Instalaciones eléctricas residenciales
Valor rms o valor efectivo

Todos los circuitos eléctricos y electrónicos se construyen de elementos de circuito que incluyen resistores (R), inductores (L) y capacitores (C). A éstos se les llama elementos positivos porque su comportamiento es independiente de la dirección de flujo de la corriente.

Qué es la corriente alterna

2021/06/29

Qué es la corriente alterna - Instalaciones eléctricas residenciales
Corriente alterna - Onda senoidal


Corriente alterna


La corriente alterna es senoidal y cambia de polaridad a intervalos específicos. Cuando la corriente o voltaje de corriente alterna pasa a través de un conjunto completo de valores positivos o negativos se dice que ha completado un ciclo. La corriente aumenta hasta un valor máximo y disminuye a cero en una dirección, después ocurre lo mismo en la dirección opuesta. Esto constituye un ciclo.

De la misma forma, el voltaje de corriente alterna aumenta hasta llegar a un valor máximo y decae a cero en una polaridad y luego en la otra. Es decir, un ciclo es un conjunto completo de valores positivos y negativos.

Frecuencia de corriente alterna


La forma de onda de la mayoría de la corriente alterna es una curva senoidal suave, con cambios graduales de voltaje y corriente. Cuando una corriente o voltaje de corriente alterna pasa a través de valores positivos y negativos, como se indicó anteriormente, se dice que se ha completado un ciclo.


En una bobina de alambre que gira en un campo magnético, cada vez que la bobina pasa de un polo al otro, el flujo de corriente generado invierte su dirección. En una revolución completa o 360° se completa el ciclo. La corriente alcanza su valor máximo en 90°, se reduce a cero en 180°, alcanza su valor máximo negativo en 270° y de nuevo a cero en una revolución completa a 360°.

Si la bobina gira a una velocidad de 60 revoluciones por segundo, el voltaje generado completará 60 ciclos en un segundo. Puede decirse entonces que el voltaje generado tiene una frecuencia de 60 Hz. La frecuencia estándar en toda América del Norte es de 60 Hz. Es importante tener presente que debido a este ciclo, cada vez que la corriente cambia de dirección disminuye a cero y en forma momentánea se apaga la carga que alimenta, en nuestro caso una lámpara.

Esto es, una lámpara que opera a 60 Hz se enciende y se apaga 120 veces por segundo, o sea una vez cada medio ciclo. El ojo humano no puede reaccionar lo suficientemente rápido para detectar este cambio y recibe la impresión de que la lámpara está encendida en forma permanente.

Frecuencia de la línea de alimentación - Instalaciones eléctricas residenciales
Frecuencia de la línea de alimentación

3 categorías para medir la tensión eléctrica

2016/04/22

Instalaciones eléctricas residenciales - voltaje en un conductor

La tensión es la fuerza que mueve a los electrones libres en el circuito. Ahora cabe preguntar, ¿cuántos electrones puede mover? Como cualquier otro trabajo, depende de la cantidad de energía que se aplique: la unidad de medida de la tensión es el voltio y se requiere 1 voltio para mover 1 coulomb (6.28 trillones de electrones libres) a través del circuito, lo cual representa 1 joule de trabajo.

Así pues, la tensión eléctrica se mide en voltios (representados con la letra V); y el conjunto de voltios que se aplica a un circuito dado recibe el nombre de voltaje o fuerza electromotriz, ya que es la fuerza que se requiere para mover cierta cantidad de electrones libres.


Esta categoría resulta de gran utilidad para hacer una distinción general de la cantidad de energía que requieren diferentes trabajos:

  • Alta tensión o alto voltaje: es la que se utiliza para transportar la energía eléctrica a grandes distancias (cientos de kilómetros)y tiene un rango que va de los 110 mil voltios y alcanza hasta 380 mil voltios.

  • Tensión media o voltaje mediano: se utiliza para transportar la electricidad a decenas de kilómetros y va de los 3000 a los 30 mil voltios de tensión.

  • Baja tensión o voltaje ligero: es la que se utiliza en la industria, el alumbrado público y el las instalaciones eléctricas residenciales, por lo regular va de los 120 a los 240 voltios.

Existen más categorías para medir la tensión que mencionaremos en futuras entradas.

¿Cómo calcular los valores de los circuitos eléctricos mixtos?

2014/05/01

Instalaciones eléctricas residenciales - Electricistas revisando un plano eléctrico

Cuando se tiene un circuito mixto, lo más recomendable es comenzar a reducir el circuito iniciando por las resistencias en paralelo hasta llegar a una forma sencilla, ya sea en serie o paralelo, para determinar corrientes, tensiones o bien potencias.

En el circuito de la Figura 1 se muestra una combinación de 3 resistencias en serie que son R1, R5 y R6, con tres resistencias en paralelo R2, R3 y R4. Los valores de cada resistencia son los siguientes: R1, R3 y R5=100Ω y R2, R4 y R6=1kΩ. Entre los puntos A y B se aplican 70 V.

Instalaciones eléctricas residenciales - Ejemplo de circuito mixto

A continuación se determinarán los siguientes parámetros ITOTAL, IR2 y VR6. Recuerda que para poder determinar una corriente es necesario aplicar la Ley de Ohm, entonces necesitas conocer la tensión aplicada al circuito y la resistencia, por lo que es necesario reducir el circuito para obtener la resistencia en los puntos A y B. Aplica la ecuación para determinar la resistencia equivalente:

Instalaciones eléctricas residenciales - Ecuación para determinar la resistencia equivalente de un circuito eléctrico

En este caso queda de la siguiente manera:

Instalaciones eléctricas residenciales - Ejemplo de ecuación para determinar la resistencia equivalente de un circuito eléctrico

La representación del circuito es como se muestra en la Figura 2.

Instalaciones eléctricas residenciales - Ejemplo de circuito en serie

El siguiente paso es sencillo debido a que sólo debes sumar de forma algebraica las resistencias en serie.

Instalaciones eléctricas residenciales - Suma de resistencias eléctricas en serie

Con el anterior resultado, ya es posible aplicar de forma directa la Ley de Ohm, para determinar la ITOTAL.

Instalaciones eléctricas residenciales - Cálculo de la intensidad total de un circuito eléctrico

Para determinar la corriente que pasa por la R2, aplica la ecuación del divisor de corriente, válida en sólo dos resistencias en paralelo, por lo que debes hacer una segunda reducción del circuito; esta vez sólo obtendrás el valor equivalente de las resistencias R3 y R4 de la Figura 1.

Instalaciones eléctricas residenciales - Fórmula de resistencia equivalente



El circuito se reduce como se muestra en la Figura 3.

Instalaciones eléctricas residenciales - Circuito mixto con una resistencia equivalente

Ahora, aplica la ecuación del divisor de corriente que se comentó anteriormente; toma como referencia la resistencia opuesta a la analizada, entre la suma de ambas resistencias por la corriente que entra a ellas, la ecuación queda entonces de la siguiente manera:

Instalaciones eléctricas residenciales - Cálculo de la intensidad en una rama de un circuito mixto

Finalmente para obtener la tensión en la resistencia 6, o como se conoce comúnmente VR6, puedes tomar la corriente ITOTAL, cuyo valor fue de 0.0545 A o bien 54.5mA y usando la Ley de Ohm en términos de corriente y resistencia obtendrás el parámetro buscado.

Instalaciones eléctricas residenciales - Tensión de una resistencia de un circuito mixto

Tener todos los valores de resistencias simplifica de gran manera la obtención de sus parámetros; por ejemplo fácilmente podríamos pensar que es posible indicar el valor de la tensión en R2, debido a que conocemos su valor y también la corriente que circula por ella; esto se puede determinar de forma directa, aunque esté en paralelo con otras dos.

Para finalizar, se obtendrá el valor de EReq y la potencia de ese grupo de resistencias.

Instalaciones eléctricas residenciales - Tensión y potencia equivalentes de un circuito mixto

Como ves, se pueden determinar las corrientes, tensiones y potencias de cada una de las resistencias, siempre y cuando tengas presentes los fenómenos eléctricos a los cuales obedece su comportamiento.

Es importante mencionar que los resultados de los parámetros eléctricos obtenidos, fueron redondeados para no manejar más de 3 dígitos después del punto decimal, porque se podría tener una variación mínima si se toman valores con 4 o 5 dígitos después del punto decimal, al realizar las operaciones.

3 categorías para la protección de equipos contra transitorios

2013/09/12

Instalaciones eléctricas residenciales - Tormenta sobre casa

Muchos de los problemas en las instalaciones eléctricas residenciales no son visibles y nos percatamos de ellos cuando tenemos un cortocircuito o nos quedamos sin energía eléctrica, claro ejemplo de esto son los transitorios o picos de voltaje.

¿Cuántas veces nos ha ocurrido que la imagen en nuestra pantalla se ve borrosa o con interferencia; que al encender la lavadora, las luces bajan de intensidad; o bien, cuando estamos hablando por teléfono se escucha con ruido si está en operación algún electrodoméstico?

Pues bien, todos estos problemas se deben a una mala calidad de la energía debido al inapropiado manejo de ésta en nuestro hogar. Por ejemplo, al tener un interruptor para una lámpara que está haciendo un falso contacto, cuando en ampliaciones se tienen polarizaciones invertidas debido al uso de conductores del mismo color para fase y neutro. La suma de todos estos fenómenos afecta en gran medida a nuestras propias instalaciones así como a los equipos y aparatos electrónicos que estén conectados a la red.


La deformación de la onda de tensión, como lo vemos en la figura anterior, muestra transitorios (elevaciones de energía que están por arriba del nivel de tensión de suministro que para uso doméstico es de aproximadamente de 120 a 127V). Este fenómeno acelera la degradación de los equipos eléctricos, electrónicos y conductores, aumentando en este último caso los problemas por fugas de corriente y la probabilidad de cortocircuito al dañarse los aislamientos.

Al estar expuestas las instalaciones eléctricas residenciales a uno o varios transitorios de tensión o picos de voltaje como también se le conocen, por causas de rayos o descargas eléctricas, los problemas son más visibles y generalmente se presentan de forma inmediata, dando como resultado el daño en los equipos más sensibles.
Instalaciones eléctricas residenciales - Trayectoria de sobretensiones transitorias

Dado lo anterior, es necesario proteger los equipos de estos fenómenos como lo señala la NOM-001-SEDE-2012, en el artículo 285, que indica el uso de supresores de tensiones transitorias, que la NOM los define como dispositivos de protección para limitar las tensiones transitorias mediante la desviación o limitación de sobrecorrientes; su función también es la de evitar el flujo continuo de la corriente resultante; después de cada operación el dispositivo mantiene la capacidad de repetir sus funciones.

En el mercado actual

En México existen una gran variedad de supresores de transitorios que se pueden identificar como Surge Protection. Hay líneas muy completas que cuentan con equipos para protección que van desde los industriales hasta los domésticos. Generalmente se recomienda tener de 2 a 3 líneas de protección para una instalación eléctrica residencial, lo cual puede verse de forma simple en la siguiente imagen.



A continuación se describen los tipos de supresores dependiendo de la categoría a la que corresponden:

  1. Categoría C
    Se proyectan para instalarse entre el devanada secundario del transformador de servicio y el lado de la línea del tablero de protección, es decir en la acometida.

    Instalaciones eléctricas residenciales - Base para medidor con supresor de picos integrado

  2. Categoría B
    Son de conexión permanente y se instalan en el lado de la carga del tablero de distribución o centro de carga.


  3. Categoría A
    Se pueden instalar de forma fija o bien como barra de multicontactos para la protección de equipos electrónicos costosos, como pueden ser pantallas de plasma, reproductores de video, equipos de cómputo, entre otros.

    Instalaciones eléctricas residenciales - Multicontacto con supresor de transitorios integrado

El siguiente vídeo nos muestra la forma de distribuir los tres tipos de supresores de sobre voltajes transitorios ene una vivienda, de pendiendo de la categoría a la que pertenezcan:


Recomendación importante

Antes, o al mismo tiempo de hacer una revisión, debes asegurarte que la instalación eléctrica cuenta con el conductor de puesta a tierra, ya que los supresores de transitorios toman las distorsiones de la señal de voltaje y los conducen a tierra.

4 formas de proteger la instalación eléctrica contra variaciones de voltaje

2013/07/22

Instalaciones eléctricas residenciales - Aparatos electrodomésticos y voltaje

Los cambios de voltaje a los que están sujetos los aparatos eléctricos pueden dañarlos seriamente, incluso dejarlos inservibles. Y aunque existen diversas formas de evitar este problema, muchas personas las desconocen o no le dan la importancia debida hasta que lo sufre su bolsillo.

La Comisión Federal de Electricidad (CFE) muestra en su portal las estadísticas de los minutos de interrupción de energía por usuario que se registran al año. Así durante el año 2011, señala que el tiempo interrumpido ha sido de casi 35 minutos; en el 2010 fue de 60 minutos. La interrupción del suministro de luz y las variaciones de voltaje, son los principales causantes de daños serios a los equipos electrónicos y electrodomésticos que tenemos en casa.

En el hogar, si haces una inspección, estamos rodeados de un buen número de aparatos, cuya suma de inversión no es nada baja. De ahí la importancia de que los protejas de manera adecuada, para que su periodo de vida útil sea largo.

¿Qué es el Voltaje?


El voltaje, también llamado tensión o diferencia de potencial, es la presión que ejerce una fuente de suministro de energía eléctrica sobre las cargas eléctricas o electrones libres en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.

A mayor diferencia de potencial sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.

Voltaje y voltio son términos en homenaje a Alessandro Volta, que en 1800 inventara la pila voltaica y la primera batería química. Algunos voltajes comunes son el de una neurona (75 mV), una batería o pila no recargable alcalina (1.5 V), un sistema eléctrico de automóvil (12 V), la electricidad en una vivienda (120 V en México), el riel de un tren (600 a 700 V), una red de transporte de electricidad de alto voltaje (135 kV) y un relámpago (100 MV).

Sube y baja


Las variaciones de voltaje se deben a diferentes factores. Una de las causas más comunes son los rayos que caen en las cercanías del tendido eléctrico. Los rayos producen una enorme perturbación que se propaga por las líneas, los transformadores y las instalaciones eléctricas del hogar, alcanzando los aparatos que estén conectados. Los rayos también producen grandes picos de voltaje en las líneas telefónicas y en los tendidos de televisión por cable que pueden dañar computadoras, faxes, teléfonos, televisores, reproductores DVD, entre otros.

Ahora bien, las variaciones de voltaje las podemos clasificar en sobretensiones y caídas de tensión. Las sobretensiones son aumentos en el voltaje que alimenta nuestros equipos eléctricos. Se producen por maniobras de la propia red, cuando por ejemplo la CFE conecta o desconecta un transformador o una línea que alimenta a muchos clientes. Las idas y venidas de corriente que se presentan con este tipo de trabajos son similares a los efectos producidos por un rayo.

En tanto, las caídas de tensión son periodos de bajo voltaje que hacen que las bombillas brillen menos y los equipos electrónicos puedan fallar.

Esto representa el más alto porcentaje de alteraciones de la energía eléctrica. Se producen cuando las compañías eléctricas compensan las sobrecargas de voltaje reduciendo su salida. Pueden producirse también caídas de tensión momentáneas, cuando en nuestro hogar tenemos conectados equipos electrónicos que consumen cantidades masivas de energía como secadoras de pelo, ventiladores, etcétera.

Instalaciones eléctricas residenciales - Variaciones de la onda de voltaje de corriente alterna

¿Cómo podemos protegerlos ?


Las recomendaciones básicas para proteger los aparatos electrónicos contra las variaciones de voltaje son tener una conexión a tierra, contactos polarizados y reguladores o no breaks por lo menos para los equipos más caros.

  1. Reguladores de voltaje

  2. Los reguladores de voltaje ayudan a proteger todo aparato eléctrico contra las variaciones de voltaje y la falta en el suministro de la energía eléctrica. El Regulador se diseñó para proteger específicamente los aparatos conectados a la corriente eléctrica.

    Instalaciones eléctricas residenciales - Regulador de voltaje

    Así, en el mercado encontramos distintos tipos de reguladores. Primero hablaremos de los monofásicos a 120V, ideales para el  hogar, oficina, bancos y tiendas de conveniencia. Protegen aparatos como computadoras, refrigeradores, home theaters, cajeros automáticos, copiadoras y más. Han sido diseñados tecnológicamente para brindar un servicio de regulación confiable y precisa, están fabricados para soportar las condiciones más extremas de trabajo y para corregir las variaciones de voltaje que presenta la red eléctrica.

    Ver también: La caída de tensión

    También existen los reguladores a 240V que tienen una eficacia comprobada en la solución de sus problemas eléctricos, brindan protección total ante variaciones de voltaje, además que le permiten un funcionamiento seguro y permanente de sus equipos e instalaciones. Su uso se recomienda en casas, consultorios médicos, oficinas, estéticas, donde se utilizan aparatos como los Mini Splits, bombas de agua, equipo para rayos X y Ultrasonido, depiladoras y equipo láser.

    Instalaciones eléctricas residenciales - Funcionamiento de un regulador de voltaje

    Los ideales para talleres mecánicos y de maquinado, imprentas, restaurantes, clínicas, boutiques y laboratorios, son los reguladores trifásicos, donde se conectan climas centrales, bombas de agua, servidores, bordadoras, equipo láser, iluminación comercial y compresores.

    Por otra parte encontramos los trifásicos industriales, para hospitales, aeropuertos, industria, maquiladoras, servicios públicos y barcos o plataformas.

    Los reguladores trifásicos son la protección más confiable y el mejor servicio de regulación del mercado. Su rendimiento está comprobado bajo las condiciones eléctricas más extremas. Cada regulador tiene características diferentes por lo que debemos escoger el adecuado para proteger nuestros equipos.

    Algunos de los beneficios de contar con un regulador de voltaje son:

    • Funcionamiento permanente y seguro de todos sus equipos, las variaciones de voltaje de la red eléctrica no afectarán el funcionamiento, la calidad de sus procesos y tiempo de fabricación.

    • Eliminar los recursos económicos gastados innecesariamente, aprovechando todo el potencial instalado: recursos técnicos, humanos, materiales, y de tiempo.

    • Incremento en la productividad y eficiencia del sistema protegido así como aumento de la vida útil de sus equipos.

  3. No Breaks (UPS)

  4. Mientras que un regulador es un equipo que provee un rango constante de energía eléctrica, un UPS (Uninterrumptible Power System, Sistema de Alimentación Ininterrumpida) es un dispositivo que cuenta con batería propia y que puede proporcionar energía eléctrica tras una falla en el suministro eléctrico.

    Instalaciones eléctricas residenciales - No break

    Cuenta con un rectificador de la corriente alterna de entrada, proveyendo corriente continua para cargar a una batería. Desde ésta se alimenta a un inversor que la convierte nuevamente en alterna. Luego de haberse descargado la batería, esta se recarga generalmente en un tiempo de 8 a 10 horas, por lo cual la capacidad del cargador debe ser proporcional al tamaño de la batería necesaria.

    Un UPS nos protege de casi todos los problemas eléctricos conocidos, soluciona un porcentaje muy importante de los problemas eléctricos que se presentan, fundamentalmente los cortes repentinos, los voltajes fuera de rango, las caídas de voltaje, en gran medida las sobretensiones, casi totalmente los ruidos EMI/RFI, mejorando la calidad de la energía eléctrica que llega a las cargas filtrando subidas y bajadas de tensión.

    En equipos tan valiosos como la computadora se recomienda el uso de No breaks (UPS), porque además de integrar la misma protección que ofrece la barra de contactos supresora de picos, incorpora bancos de baterías que proporcionan el tiempo de respaldo para guardar la información y apagar debidamente la operación de los equipos.

  5. Protectores de Voltaje

  6. Protegen tanto de subidas como de bajadas de voltaje. El protector absorbe el impacto y se desconecta automáticamente para impedir el paso de la variación al equipo conectado. Existen muchas opciones tanto para equipos en 120V o 240V.

    Instalaciones eléctricas residenciales - Protector de voltaje

  7. Supresor de Picos

  8. Un Supresor de picos de voltaje cumple la función de absorber el voltaje excesivo y peligroso, evitando las sobrecargas de corrientes dañinas hasta una capacidad máxima.

    Instalaciones eléctricas residenciales - Apartarrayos secundario (supresor de picos)

    Si el voltaje excede cierto límite en el supresor de picos, se desvía hacia una línea a tierra, de esa forma se evita que los aparatos eléctricos se dañen.

Está en tus manos


Existen más de 1000 productos que protegen tus aparatos de los problemas de la corriente eléctrica; te dan soluciones a dichos problemas y te proporcionan tiempos de respaldo variables.

Hay modelos que brindan abundancia en energía de respaldo, que te permiten trabajar durante las etapas de apagones que van de poco tiempo a tiempos muy extendidos hasta por varios días. Es sólo cuestión de que hagas conciencia de que es mejor prevenir que lamentar.

Para terminar te dejo algunos consejos para proteger tus aparatos eléctricos:

  • Revisa la conexión a tierra de tu instalación. Cuando un equipo tiene tres terminales en el enchufe, asegúrate de utilizar el contacto adecuado (polarizado), con conexión a tierra. Nunca cortes esta terminal, ni utilices extensiones de dos líneas para estos equipos.

  • No conectes equipos electrónicos delicados (computadoras, dvd´s) en los mismos contactos utilizados con otros electrodomésticos (lavadora, refrigeradores). Procura que los equipos electrónicos delicados estén conectados en circuitos independientes.

  • Utiliza equipos de protección contra sobrevoltajes.

  • Durante una tormenta eléctrica, desconecta totalmente tus equipos más delicados. Hazlo también cuando ha ocurrido una interrupción del servicio eléctrico. Muchos equipos pueden dañarse cuando se restablece el servicio, por los sobrevoltajes que se producen al reconectar las líneas.

  • Asegúrate de que las instalaciones telefónicas y de TV por cable de la casa son las adecuadas. Los sobrevoltajes también se propagan por las líneas telefónicas. Computadoras y equipos con conexión telefónica pueden dañarse por este medio.

¿Por qué CFE maneja varias tarifas eléctricas?

2013/06/21

Instalaciones eléctricas residenciales - Carátulas de medidor de energía eléctrica

A lo largo de la evolución del ser humano se han desarrollado diferentes dispositivos y herramientas con la finalidad de facilitar el trabajo, ofrecer confort, diversión y seguridad; gran parte de este desarrollo tecnológico se da gracias a la capacidad de transformar los diferentes tipos de energías, como la mecánica (movimiento originado por caídas de agua, motores de combustión, aire, marejadas), la química y la solar, en electricidad.

La ventaja de la energía eléctrica es que puede ser transportada instantáneamente desde las fuentes de generación hasta los centros de consumo en donde se transforma en energía mecánica, luz, calor, etc. a través de motores, lámparas y resistencias eléctricas.

Con la finalidad de poder entender los parámetros básicos que intervienen en los costos y tamaño de las instalaciones eléctricas ponemos a consideración los siguientes conceptos.

La energía eléctrica básicamente consiste en hacer circular electrones libres a través de conductores, dispositivos y equipos. La fuerza con que estos electrones libres se mueven se les llama tensión eléctrica, comúnmente llamado voltaje (por sus unidades, los volts).

El número de electrones libres que se desplazan por un punto dado en la unidad de tiempo es la corriente eléctrica, cuyas unidades son los amperes: el producto de estos parámetros da la potencia eléctrica, que es la fuerza por la cantidad de electrones, cuyas unidades son los watts.

El tiempo que se usa esta potencia da como resultado la energía eléctrica cuyas unidades son watts-hora. Todo aquel dispositivo o equipo que utiliza energía eléctrica para funcionar se le llama carga (motores, lámparas, electrodomésticos, hornos, etc.) y generalmente tiene indicada la potencia (watts) que utiliza para funcionar satisfactoriamente.

Dado que no es económicamente rentable el almacenar energía eléctrica en grandes cantidades, ésta se debe producir en el mismo momento en que se consume o utiliza, de tal forma que el dimensionamiento de las fuentes de generación y los elementos de la instalación (conductores, protecciones, elementos de seccionamiento, etc.) se diseñan y/o seleccionan en base a la tensión (volts) y la demanda expresada en corriente (amperes) y/o potencia (watts), que tiene que transportar desde la generación hasta los elementos de consumo (cargas).

La energía eléctrica (kWh), conocida comúnmente como consumo, está relacionada directamente con el tiempo que se utiliza un dispositivo, esta energía se traduce en la cantidad de materia prima que requieren las fuentes para poder generarla (m3 de agua, barriles de combustóleo, cantidad de vapor, etc.), de tal forma que en el costo del servicio de energía eléctrica debe de estar reflejado el costo de la energía consumida (kWh), el nivel de tensión (Volts) y demanda (kW).


En las tarifas domesticas (1) y las de pequeños comercios o micro empresas (2) se cobra el consumo de energía (kWh), mientras que en las tarifas 3 y OM usadas en pequeños y medianas empresas y comercios además de la energía se cobra la demanda (kW) máxima que se tuvo en el mes (cuadros 1 y 2):

Instalaciones eléctricas residenciales - Tarifa doméstica CFE

Instalaciones eléctricas residenciales - Costo de energía CFE

Los costos de energía dependen básicamente de los costos de producción y los costos de la demanda de la infraestructura necesaria para trasportar la energía desde las fuentes de generación hasta el punto de consumo.

De acuerdo con lo anterior, para reducir el costo de facturación de energía eléctrica es necesario disminuir el consumo (kWh) utilizando equipo más eficiente, disminuir las pérdidas a lo largo de los conductores y dispositivos de las instalaciones, desconectar los equipos que no se usen y evitar las fugas a tierra, que se dan por fallas en el aislamiento de las conexiones o del cableado.

En servicios con tarifas 2 y 3 donde se cobra la demanda (kW) es necesario tener una adecuada administración del uso en el tiempo de los equipos y dispositivos disminuyendo la simultaneidad, en la medida de lo posible, de la puesta en servicio de éstos, dado que la medición indica la demanda media en kilowatts durante cualquier intervalo de 15 minutos en el periodo de la facturación.

Una instalación eléctrica debe ser segura para las personas y sus propiedades. Para cuidar este punto, la Secretaría de Energía emitió la NOM-001-SEDE vigente, que tiene como objetivo establecer las especificaciones y lineamientos de carácter técnico que deben satisfacer las instalaciones.

En forma general, la NOM indica el tamaño mínimo de los conductores, la capacidad máxima de las protecciones, conexión de puesta a tierra, tamaño de tuberías o canalizaciones para alojar los conductores, entre otras especificaciones.

Para el ahorro de energía las oportunidades están en utilizar equipos o dispositivos más eficientes (alumbrado, motores, acondicionadores de aire, refrigeración), disminuir la generación de calor al utilizar conductores seguros y económicamente rentables, revisar puntos de uniones o conexiones (tornillos, empalmes o uniones entre conductores) y evitar fugas a tierra. En los servicios que tengan tarifa 3, OM, HM debe cuidarse la demanda máxima que se registra cada mes, para lo cual es necesario llevar una administración adecuada de la hora en que se ponen en servicio los equipo. Lo ideal es que la demanda cada hora sea la misma.

5 tipos de subestaciones eléctricas

2013/05/31

Por su función, las subestaciones eléctricas se clasifican en:

  1. Subestaciones en las plantas generadoras o centrales eléctricas. Modifican los parámetros de la energía suministrada por los generadores para poder transmitirla en alta tensión. Los generadores pueden suministrar la potencia entre 5 y 25 kV. La transmisión depende del volumen, la energía y la distancia.

    Instalaciones eléctricas residenciales - Subestación en central generadora

  2. Subestaciones receptoras primarias. Reciben alimentación directa de las líneas de transmisión y reducen la tensión para alimentar los sistemas de subtransmisión o las redes de distribución. Pueden tener en su secundario tensiones de 115, 69, 34.5, 6.9 ó 4.16 kV.

    Instalaciones eléctricas residenciales - Subestación receptora primaria

  3. Subestaciones receptoras secundarias. Reciben alimentación de las redes de subtransmisión y suministran la energía a las redes de distribución a tensiones comprendidas entre 34.5 y 6.9 kV.



Por el tipo de instalación, se clasifican en:

  1. Subestaciones tipo intemperie. Son instalaciones de sistemas de alta y muy alta tensión generalmente, y están habilitadas para resistir las diversas condiciones atmosféricas.

    Instalaciones eléctricas residenciales - Subestación tipo intemperie

  2. Subestaciones tipo blindado. Son una variante del tipo interior, se instalan en edificios que disponen de espacios reducidos para alojarlas. Sus componentes deben estar bien protegidos.

    Instalaciones eléctricas residenciales - Subestación blindada

Los parámetros eléctricos a considerar para definir el tipo de construcción y los equipos y aparatos de las subestaciones son: la tensión que requiere la instalación, el nivel de aislamiento aceptable en los aparatos, la corriente máxima y la corriente de corto circuito.

Las tensiones del sistema eléctrico nacional, según lo reportado por CFE son:

  • Para transmisión: 161, 230 y 400 kV.
  • Para subtransmisión: 69, 85, 115 y 138 kV.
  • La red de distribución está integrada por las líneas de subtransmisión con los niveles mencionados anteriormente de 69, 85, 115 y 138 kV; así como las de distribución en niveles de 34.5, 23, 13.8, 6.6, 4.16 y 2.4 kV y baja tensión.
  • Para distribución en plantas industriales: 34.5 kV, 23 kV, 13.8 kV, 4.16 kV, 440 V, 220/127 V.

Entre los beneficios que proporcionan las subestaciones eléctricas podemos mencionar:

  1. Mayor seguridad en el suministro. Por lo general, la alimentación de las subestaciones proviene de líneas de alto voltaje que por estar protegidas hacen que la probabilidad de fallo sea menor. Por lo tanto, existe una mejor regulación del voltaje.

  2. Uso racional de energéticos. Al reducir las caídas de tensión, el uso de conductores de grueso calibre también disminuye, de modo que es posible tener voltajes de distribución de 440 V, 2300 V, 4160 V, etc., con los que habrá menos pérdidas.

  3. Economía. El costo del suministro de energía de alta tensión es más bajo que el de baja tensión. Además, la instalación de subestaciones en los grandes centros de consumo permite ahorrar materiales como cables y conductos.

Antes de diseñar una subestación, es necesario solicitar a la compañía proveedora de energía eléctrica datos como el nivel de voltaje disponible, la variación del nivel de voltaje, el punto de entrega del suministro y la ruta de la línea, la corriente de corto circuito trifásico y monofásico en el punto de suministro y las tarifas.

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más