Instalaciones Eléctricas Residenciales
Mostrando las entradas con la etiqueta electrón. Mostrar todas las entradas
Mostrando las entradas con la etiqueta electrón. Mostrar todas las entradas

La electricidad y el carácter eléctrico de la materia

2022/12/19

 

La electricidad y el caracter eléctrico de la material - Cuadro de algunas unidades útiles en el electromagnetismo


Hablemos de la electricidad y el carácter eléctrico de la materia. Al frotar una barra de hule con un pedazo de lana, tanto la barra como la lana se electrizan o se cargan eléctricamente. Ahora, si dos barras de hule que se han frotado con lana se colocan una cerca de la otra, se observa una fuerza de repulsión entre las dos. Frotemos, a continuación, dos barras de vidrio con un pedazo de seda. Al ponerlas una cerca de la otra, observaremos otra vez una fuerza de repulsión entre las barras de vidrio. Pero si acercamos una de las barras de hule a una barra de vidrio, previamente electrizadas, veremos que existe ahora una fuerza de atracción.

La carga de todo cuerpo electrizado puede compararse con la de tales barras. Y decimos que cuando se repelen por la barra de hule cargada tienen una carga negativa. Y cuando se repelen por la barra de vidrio electrizada tienen una carga positiva. La elección del signo de la carga, es decir, los adjetivos de positiva y negativa son arbitrarios. La convención establecida es la que se adopta en toda la física.

Experimentalmente se encuentra que la carga eléctrica no puede crearse ni destruirse. Cuando se crea una carga positiva siempre se genera una carga negativa de igual magnitud. Esta es una de las leyes fundamentales de la física y recibe el nombre de ley de la conservación de la carga eléctrica.

Sabemos que la materia está formada por átomos, los cuales constan de un núcleo, que a su vez está formado por protones y neutrones, y de electrones. Los protones tienen una carga positiva y los electrones una carga negativa. Así, el núcleo de un átomo está cargado positivamente, y los electrones están ligados a los núcleos formando una especie de atmósfera alrededor de ellos. Cuando el átomo se encuentra en su estado normal, el número de protones es igual al número de electrones, por lo que es eléctricamente neutro.

El carácter eléctrico de la materia


Es, a veces, conveniente pensar que un átomo es una especie de sistema solar en miniatura: el núcleo toma el ellugar del sol,y los electrones el lugar de los planetas. Aunque esta imagen se encuentra muy alejada de la realidad. En un átomo con varios electrones, algunos están cerca del núcleo, y los otros se encuentran a distancias mayores. Así, por ejemplo, el átomo de sodio tiene 11 electrones, de los cuáles dos se encuentran muy cerca del núcleo, ocho a una distancia mayor y el último está más lejos todavía. Este último no está muy fuertemente ligado al átomo y se puede remover muy fácilmente.

Ver también: El electromagnetismo

En general, un átomo con varios electrones tendrá algunos que dificilmente pueden removerse, y algunos otros, aunque en menor número, que pueden desprenderse muy fácilmente. Por ejemplo, los átomos de litio y de sodio tienen electrones externos que se pueden remover muy fácilmente. Otros átomos, como el helio, el neón y el argón, tienen electrones externos que sólo difícilmente pueden removerse. Las propiedades químicas de los elementos están determinadas por sus electrones externos.

Se observa que los átomos o moléculas de algunas substancias fácilmente capturan electrones y otras los ceden. Se dice, entonces, que la afinidad electrónica de las primeras es mayor que la de las segundas. Al p oner en contacto dos substancias de distinta afinidad electrónica, la que la tenga mayor absorberá electrones de la otra. La primera quedará cargada negativamente y la segunda positivamente.

¿Qué opinas sobre la relación que existe entre la electricidad y el carácter eléctrico de la materia?

¿Por qué mi cabello tiene mucha electricidad?

2016/06/07

La palabra "estático" significa falto de movimiento. Por lo tanto, la electricidad estática es una carga eléctrica sin movimiento. Todos los materiales están hechos de átomos. Un átomo es la partícula más pequeña de un material que todavía conserva las propiedades de dicho material. Cada átomo está formado por un núcleo con carga positiva alrededor del cual se mueven uno o más electrones negativos. En reposo, la carga positiva del núcleo es igual a la suma de las cargas negativas de todos los electrones que giran a su alrededor. Esto significa que la carga es neutra.
Instalaciones eléctricas residenciales - carga eléctrica

Si el núcleo gana o pierde electrones, se produce un desequilibrio. Un átomo que pierde uno o más electrones pasa a tener carga positiva, mientras que un átomo que gana uno o más electrones pasa a tener carga negativa, y se conoce como ión. Solo existen dos tipos de carga: positiva y negativa. Los átomos que tienen el mismo tipo de carga se repelen, mientras que los que tienen cargas opuestas se atraen.
Instalaciones eléctricas residenciales - ion

La electricidad estática es un fenómeno de las superficies que se genera cuando dos o más cuerpos entran en contacto y se separan de nuevo. Esta acción da lugar a una separación o transferencia de electrones negativos de un átomo a otro. El nivel de carga (la fuerza del campo) depende de varios factores: el material y sus propiedades físicas y eléctricas, la temperatura, la humedad, la presión y la velocidad de separación. Cuanto mayor es la presión o la velocidad de separación, mayor es la carga.
Instalaciones eléctricas residenciales - descarga de electricidad estática



A muchas mujeres les pasa que tras lavar, peinar y secar su cabello, este adquiere un aspecto rebelde, erizándose y quedándose tieso. Esto es debido a una acumulación de electricidad estática, la cual puede estar causada por varios factores como el roce con tejidos sintéticos, los cambios de temperatura, los componentes de nuestro champú e incluso por la forma de cepillarnos el cabello.
En el siguiente vídeo, publicado originalmente en el canal de YouTube de Aeril Quenn, se habla sobre la problemática de la electricidad estática en el cabello.

¿Qué es la "banda de conducción" de un átomo?

2016/01/08

Los electrones giran alrededor del núcleo en diferentes órbitas (cuyo nombre correcto es niveles energéticos). En cada nivel, los electrones se alejan más del núcleo y la fuerza de atracción disminuye. Como es lógico, en el último nivel energético la atracción del núcleo sobre los electrones es más débil.
A este último nivel se le conoce como banda de conducción y los electrones que se encuentran en ella reciben el nombre de electrones libres, porque pueden saltar de dicha banda y desplazarse de un átomo a otro dentro del cuerpo que los contiene. Este fenómeno ocurre cuando el átomo es excitado por medio de calor, luz o electricidad, de manera que algunos de sus electrones absorben energía en exceso y eso provoca el salto.
El movimiento de electrones libres es lo que crea la corriente eléctrica, pues al saltar de la banda de conducción liberan un poco de su energía negativa, que vuelven a recuperar cuando llegan al siguiente átomo. El proceso se repite millones y millones de veces. Entre más electrones vaguen libremente por el cuerpo que los contiene, mayor será la energía que se genere.

Ver también: Corriente eléctrica.


Instalaciones electricas residenciales - movimiento de electrones libres
Movimiento de electrones libres

Este proceso no es desorganizado, de hecho está regulado de manera natural por la estructura misma de los átomos. Tal mecanismo regulador es llamado regla de octetos y consiste en lo siguiente:
En todo átomo, la última órbita (banda de conducción) admite un máximo de ocho electrones para completar su estructura y todos los átomos tienden a llenarla. Los átomos que tienen entre uno y tres electrones en la última órbita tienden a cederlos a otros que los requieran para completar el octeto (ocho electrones).
La exactitud del funcionamiento de la banda de conducción y la regla del octeto son fundamentales para comprender la generación de la corriente eléctrica que circula por nuestras instalaciones eléctricas residenciales.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

Cargas electrostáticas

2016/01/05

Como sabemos, el átomo está constituido por protones con carga positiva (+), electrones con carga negativa (-) y neutrones, unidos por la fuerza atómica.
La fuerza que ejercen las respectivas cargas de protones y electrones se representa gráficamente con líneas de fuerza electrostática.

Instalaciones eléctricas residenciales - líneas de fuerza eléctrostáticas


Se trata de líneas imaginarias que muestran la dirección y potencia del campo; por convención y para evitar confusiones, las líneas de fuerza de la carga positiva se representan siempre saliendo de ellay las negativas entrando a la suya.
Las cargas electrostáticas interactuan entre sí, de manera natural, por medio de dos fuerzas; atracción y repulsión siempre en el mismo sentido: cargas iguales se repelen y cargas contrarias se atraen.

Instalaciones eléctricas residenciales - atracción y repulsión de cargas

Para comprobarlo hagamos el siguiente experimento:

  1. Infla dos globos hasta que el plástico que de tenso.
  2. Corta dos hilos de 10 cm y uno de 30 cm.
  3. Amarra la punta de cada hilo de 10 cm al nudo de cada globo, con la otra punta haz un pequeño lazo de manera que pueda entrar y moverse libremente por el cordel de 30 cm.
  4. Frota ambos globos con un trozo de nailon, lana o sobre tu cabello (debe estar seco y libre de ungüentos).
  5. Acerca los globos desde le lazo, arrastrándolos por el cordel tenso. Los globos tienen la misma carga electrostática, por lo que tenderán a separarse (repulsión)
  6. Toma un nuevo globo y antes de colgarlo del cordel toca con él alguna pieza de metal y repite el paso anterior. Ahora los globos tienen cargas electrostáticas distintas, por lo que tenderán a juntarse (atracción).

Instalaciones eléctricas residenciales - atracción y repulsión de globos con cargas electrostáticas


El material con el que se frotó el globo le transmitión una sobrecarga de electrones; por tal razón, el globo obtuvo una carga negativa predominante. Al acercar otro globo con la misma carga, los globos tendieron a rechazarse (repulsión). Cuando se tocó el tercer globo con metal, le globo transmitió parte de sus electrones, por lo que obtuvo una carga positiva predominante. Al acercarse al globo con carga negativa, ambos tendieron a unirse (atracción). En resumen: los globos con cargas iguales se rechazan y los globos con cargas distintas se atraen.
Este fenómeno recibe el nombre de magnetismo y se define con la capacidad de ciertos materiales para ejercer fuerzas de atracción o repulsión sobre otros. El magnetismo es esencial para generar la energía eléctrica que recibimos en nuestras instalaciones eléctricas residenciales.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

Átomo, materia y energía

2016/01/04

Instalaciones electricas residenciales - ecuacion de Einstein

Para comprender el funcionamiento de la electricidad que circula en nuestras instalaciones eléctricas residenciales, es indispensable estudiar la naturaleza del átomo. Seguramente has visto en algún lugar la famosa ecuación de Albert Einstein E=mc². Significa que la cantidad de energía (E) que contiene un objeto cualquiera es igual a su masa (m) multiplicada por el cuadrado de la velocidad de la luz (c²); la velocidad de la luz en el vacío es de 300 mil km por segundo.

Instalaciones electricas residenciales - albert einstein

La ecuación de Einstein tiene muchas implicaciones de gran importancia para la ciencia que no es posible abordar aquí; lo importante para nuestra materia es que la ecuación demuestra sin lugar a duda lo siguiente:

  1. Incluso los objetos más pequeños contienen una gran cantidad de energía.
  2. La materia y la energía son dos caras de la misma moneda, o bien; son dos manifestaciones del mismo fenómeno y ambas están relacionadas con el átomo.

Actualmente sabemos con certeza que el átomo está integrado por dos partes fundamentales: un núcleo, circundado por una nube de electrones que traza órbitas muy precisas alrededor del primero.

Ver también: La material y el átomo

El núcleo es  la parte más pesada del átomo; está constituido por dos diminutas partículas llamadas protones y neutrones. El electrón es mucho más ligero con relación la núcleo.

Instalaciones electricas residenciales - atomo


El átomo es la parte fundamental de toda la materia y energía del Universo. Todo lo que conocemos está hecho de estas diminutas partículas. Los átomos individuales reciben el nombre de elementos químicos, y tienden a combinarse entre sí de manera natural para formar estructuras más complejas llamadas moléculas. Por ejemplo, un átomo de oxígeno que se combina con dos de hidrógeno forman una molécula de agua, y una gota de agua contiene millones de moléculas. A su vez, las moléculas se combinan entre sí para dar forma a estructuras más complejas, incluyendo a todos los seres vivos y objetos inanimados.

Instalaciones electricas residenciales - molecula de agua


Cabe preguntarnos: ¿cómo se mantienen unidas estas tres partículas (protones, electrones y neutrones)?¿Por qué no salen disparados los electrones? ¿Por qué no se desintegra el núcleo del átomo?
La respuesta es sencilla: porque están cargados de energía, como lo indica la fórmula de Einstein. La escencia de este fenómeno radica en que son cargas de energía contrarias, pero en equilibrio: los electrones tienen una carga predominante negativa, los protones positiva y en los neutrones no predomina ninguna, por eso se dice que son neutros. Ambas cargas energéticas reciben el nombre de cargas electrostáticas y la fuerza que une a las tres partículas se conoce como fuerza atómica.
Las cargas electrostáticas son el principio básico de la electricidad: su naturaleza, funcionamiento y control. De hecho, la electricidad es un fenómeno natural que sucede cuando los electrones se mueven libremente por el espacio. Un rayo, por ejemplo, es una fuerte descarga eléctrica natural que se mueve libremente a través del aire. El estudio de la electricidad consiste en aprender las técnicas para generar, transmitir, controlar y transformar esta poderosa fuerza natural.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

Fenómenos electrostáticos

2015/11/23

Instalaciones electricas residenciales - peine con carga electrica

Si se frota un peine en el pelo y se acerca a pequeños pedazos de papel, son atraidos por el primero. Decimos que el peine se electrizó, o se cargó eléctricamente. Este fenómeno lo descubrió Tales de Mileto al frotar ámbar (que en griego se dice elektron). Esta sustancia, al igual que el peine, atraía pequeños objetos.

Ver también: Un poco de Historia.

En el siglo XVII, William Gilbert descubrió que al ser frotados otros materiales se comportaban con el ámbar y a esta propiedad la llamó electricidad.

En 1747, Benjamín Franklin propuso que a la electricidad que adquiría el vidro al ser frotado se le llamase positiva y a la de la resina negativa, pero considerando que la electricidad en realidad era la misma: un cuerpo tenía exceso o deficiencia de electrones. Como las cargas eléctricasa no se mueven de los cuerpos, fenómenos como el del peine y los trocitos de papel fueron llamados electrostáticos.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

Organización del átomo

2015/11/18

Instalaciones electricas residenciales - organizacion del atomo

La material está formada por átomos. Un átomo es un conjunto de partículas eléctricamente neutro, en el que se distingue el núcleo central y la región periférica.

Considerado como esfera, tiene un radio entre 1 y 2 angstroms, es decir, entre 0.1 y 0.2 namómetros.

El núcleo contiene varias partículas subatómicas entre las que sobresalen los protones y los neutrones. Ambos constituyen los nucleones. El protón tiene carga eléctrica positiva. El neutrón no tiene carga. La masa del protón es 1.6×10−27 kg, igual a la del neutrón. La masa total del átomo es la suma de protones y neutrones.

El número de protones se conoce como número atómico, y es utilizado para clasificar los distintos átomos.


La periferia está compuesta por los electrones con carga eléctrica negativa y que giran al rededor del núcleo en órbitas. La masa total del electrón es de 9.1×10−31 kg. Como el átomo es eléctricamente neutro, debe haber en la periferia tantos electrones como protones tiene el núcleo.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

2 razones de los efectos que causan los electrones

2013/11/21

2 razones de los efectos que causan los electrones - Instalaciones eléctricas residenciales

La teoría electrónica


2 razones de los efectos que causan los electrones. Todos los efectos de la electricidad se producen debido a la existencia de una diminuta partícula llamada electrón. Nadie ha visto en realidad un electrón. Únicamente los efectos que éste produce. Llamamos teoría electrónica a las leyes que gobiernan su comportamiento. La teoría electrónica no es sólo la base para el diseño de todo el equipo eléctrico y electrónico. También explica la acción fisicoquímica. Ayuda a los científicos a sondear en la naturaleza íntima del universo y la vida misma.

Ya que supuestamente el electrón existe ha conducido a muchos descubrimientos importantes en la electricidad, la electrónica, la química y la física atómica. Podemos suponer sin temor a equivocarnos que el electrón existe realmente. Todos los equipos eléctricos y electrónicos se han diseñado en base a esta teoría. Y si la teoría electrónica ha funcionado siempre para todos, también funcionará para tí.

2 razones de los efectos que causan los electrones


Tu estudio de la electricidad y las instalaciones eléctricas residenciales, se basará exclusivamente en la teoría electrónica. Ésta establece que existen 2 razones de los efectos que causan los electrones:


  1. Por el movimiento de los electrones de un lugar a otro.

  2. Porque existe exceso o deficiencia de electrones en un punto determinado en un momento dado.

De acuerdo a la teoría electrónica, todos los efectos eléctricos y electrónicos obedecen al desplazamiento de los electrones de un lugar a otro, o a que hay una cantidad demasiado grande o demasiado pequeña de electrones en una zona determinada.


Antes de que se pueda comenzar a considerar útilmente a las fuerzas que hacen que los electrones se muevan o se acumulen, se tiene que saber primero, ¿qué es un electrón?

Toda materia está compuesta de átomos de muy distintos tamaños, grados de complejidad estructural y pesos. Pero todos ellos se parecen en que tienen un núcleo —que son distintos en un átomo y otro, de los cientos y tantos elementos químicos que existen ya sea en la naturaleza o que han sido hechos por el hombre— y en el variado número de electrones que se mueven alrededor del núcleo.

Tendrás una idea de cómo es un átomo esencialmente observando la imagen siguiente.

Representación de un átomo - Instalaciones eléctricas residenciales

En la próxima entrada hablaremos sobre cómo los electrones llegan a integrar estructuras más complejas y dan forma a toda la material que conocemos.

¿Cómo funciona una central generadora nucleoeléctrica?

2013/03/26

Instalaciones eléctricas residenciales - Parte de un generador nucleoeléctrico

El ser humano siempre ha mantenido una relación estrecha con la energía. Desde su primer contacto con el fuego se dio cuenta de sus múltiples aplicaciones y, por lo tanto, de su valor. Por ello siempre ha tratado no sólo de conservar la energía, sino también de manejarla y obtenerla de distintas fuentes. Por ejemplo, actualmente obtenemos energía del sol, de combustible fósiles, del viento o de reacciones nucleares. Muchas son las ideas que rondan el tema, pero en esta ocasión vamos a mostrarte cómo funciona en realidad la energía nuclear.

La evolución de la humanidad ha estado ligada a la utilización de la energía en sus distintas formas. Sin lugar a dudas, el descubrimiento del fuego, su producción y control marcan un acontecimiento importante en la historia de la sociedad. Cada vez que el hombre descubre una nueva fuente de energía o crea un procedimiento distinto para obtenerla, produce grandes avances tecnológicos y sociales.

Por mencionar algunos recordemos que el aprovechamiento de la fuerza de tracción de los animales permitió el desarrollo de la agricultura y, como consecuencia, algunos pueblos se volvieron sedentarios; la utilización de la energía del viento dio un fuerte impulso a la navegación, al comercio y al intercambio de ideas y conocimientos entre los pueblos de la antigüedad. Gracias a la invención de la máquina de vapor los métodos de producción artesanal pasaron a ser masivos, lo que desembocó en la Revolución Industrial a fines del siglo XVIII y principios del siglo XIX. En el siglo XX dimos un gran salto en este campo gracias a los avances en la física nuclear.

Para producir energía eléctrica basta con mover una serie de espiras de cobre (bobina) en el seno de un campo magnético inducido por un imán. En las terminales de la bobina se generará un voltaje. Al conjunto formado por el campo magnético y la bobina se lo denomina generador, es una máquina que transforma la energía mecánica utilizada para mover la bobina en energía eléctrica. La electricidad no es más que energía mecánica transformada.

Siguiendo este principio, el hombre ha podido obtener gran parte de la electricidad que requiere empleando diferentes medios de generación, una idea común es que cuando decimos nucleoeléctrica obtenemos la energía del uranio, y en realidad es el agente que produce el vapor para mover el conjunto generador.

Existen varios tipos de centrales generadoras de energía eléctrica, entre ellas podemos mencionar: termoeléctricas, de turbogas, de ciclo combinado, de diesel, carboeléctricas, geotermoeléctricas, eólicas, solares y nucleoléctricas.

Instalaciones eléctricas residenciales - Central generadora de Ciclo Combinado
Central generadora de ciclo combinado

Instalaciones eléctricas residenciales - Central generadora carboeléctrica
Central genaradora carboeléctrica

Instalaciones eléctricas residenciales - Central generadora hidroeléctrica
Central generadora hidroeléctrica

Toda la materia del universo está formada por moléculas que, a su vez, están constituidas por átomos, pequeñísimas unidades que durante mucho tiempo se consideraron indivisibles. En la actualidad sabemos que los átomos están constituidos por protones y neutrones en el núcleo, y electrones que giran alrededor de éste. El protón y neutrón tienen prácticamente la misma masa, pero se diferencian en que el primero posee una carga eléctricamente positiva y el segundo carece de carga. Protones y neutrones fuertemente unidos entre sí integran lo que se denomina núcleo del átomo, cuya masa es casi igual a la suma de las masas de los protones y neutrones que lo componen. La carga eléctrica total del núcleo es positiva y es igual a la suma de las cargas de sus protones.

Los experimentos sobre la radioactividad (propiedad de emitir radiaciones) de ciertos elementos como el uranio, el polonio y el radio, llevados a cabo a fines del siglo XIX por Henri Becquerel, Pierre y Marie Curie, condujeron en 1902 al descubrimiento del fenómeno de la conversión de un átomo en otro diferente a partir de una desintegración espontánea que ocurría con gran desprendimiento de energía.

Poco después, en 1905, los estudios de Einstein explicaron que dicho desprendimiento de energía era el resultado de la transformación de pequeñísimas cantidades de masa de acuerdo con la equivalencia E=mc². Ambos hechos condujeron a la conclusión de que si se lograba desintegrar a voluntad los átomos de algunos elementos, seguramente se podría obtener cantidades fabulosas de energía.

Una central nucleoeléctrica es una instalación industrial donde se transforma la energía contenida en los núcleos de los átomos en energía eléctrica utilizable. Mientras que en una termoeléctrica el calor se obtiene quemando combustibles fósiles o en una geotérmica, extrayendo vapor natural del subsuelo, en una nucleoeléctrica el calor se obtiene a partir de la fisión nuclear en un reactor.

Mediante el bombardeo con neutrones a los núcleos de los átomos de uranio 235 (U235) se consigue que los núcleos capturen al neutrón y se fisionen (dividan) posteriormente en dos fragmentos; la fisión de cada uno de estos núcleos tiene como resultado un gran desprendimiento de energía calorífica y la liberación de dos o tres nuevos neutrones, que se aprovechan para fisionar otros núcleos similares, a esto se le llama reacción en cadena.

Instalaciones eléctricas residenciales - Fisión nuclear

En los reactores de Agua Hirviente (que es uno de muchos tipos que hay) el calor producido por la reacción es utilizado para hervir agua de alta pureza en el interior de un reactor, el vapor que surge es utilizado para hacer girar una turbina acoplada al generador, el cual producirá la electricidad.

Un reactor nuclear consta de los siguientes elementos esenciales: combustible, moderador, refrigerante y material de control. El combustible que se utiliza es uranio 235 (U235) en forma de dióxido de uranio (UO2), con éste se fabrican pequeñas pastillas cilíndricas que se encapsulan en un tubo hermético de aleaciones especiales de circonio (zircaloy), su función es contener los productos de la fisión, además de proteger las pastillas de la corrosión y erosión del fluido refrigerante.

El papel de moderador y refrigerante está a cargo del agua de alta pureza que mantiene inundado el núcleo del reactor. Lo que requiere moderarse es la velocidad de los neutrones producto de la fisión (del orden de 20 000 km/s) mediante choques elásticos para conseguir que éstos estén en condiciones de producir nuevas fisiones (velocidad del orden de 2 km/s) y establecer una reacción en cadena cuya intensidad determinará la cantidad de calor generado en el reactor, dicho calor será evacuado por el agua de alta pureza, por ello también funciona como refrigerante.

El material de control está representado por el carburo de boro contenido en las 109 barras cruciformes de control, el boro tiene la propiedad de atrapar neutrones, lo que lo hace apto para cumplir esta función tan importante en la operación segura del reactor, además son parte activa de un sistema de seguridad que se anticipa a cualquier anormalidad en los parámetros más importantes del reactor deteniendo de inmediato la reacción en cadena.

Los distintos combustibles, moderadores, refrigerantes y materiales de control, que pueden ser utilizados y combinados de diferente manera, han permitido el desarrollo de muchos tipos de reactores, por ejemplo: de agua ligera a presión (PWR, por sus siglas en inglés), de agua pesada a presión (PHWR o CANDU), enfriados por bióxido de carbono y moderados por grafito (GCR), rápidos de cría enfriados por sodio (LMFBR), etcétera.

Entre las ventajas que presentan las centrales nucleoeléctricas encontramos:

  1. Genera grandes cantidades de energía con pequeñas cantidades de combustible: 1 pastilla equivale a 808 kg de carbón, 4 barriles de petróleo ó 481 m3 de gas.
  2. Cuesta casi lo mismo que el carbón, por lo tanto no es costosa
  3. La energía nuclear es segura y confiable
  4. No produce humo o dióxido de carbono, por lo que no contribuye a aumentar el efecto invernadero
  5. Produce pequeñas cantidades de desperdicios
  6. No produce lluvia ácida.

Ver también: La energía nuclear

También existen algunas desventajas:

  1. En México todavía no producimos uranio enriquecido
  2. Manejar energía nuclear siempre conlleva un riesgo, por lo que se requiere gran inversión en el área de seguridad
  3. Hay que ser cuidadosos con el manejo de desperdicios nucleares. Deben ser enterrados y sellados durante varios años para permitir que la radioactividad disminuya

Instalaciones eléctricas residenciales - Partes de un reactor nuclear
Partes de un reactor nuclear

Para ilustrar todo lo anterior veamos el ejemplo de la única planta nuclear existente en México, Laguna Verde:

Instalaciones eléctricas residenciales - Central generadora de Laguna Verde

La Central Nucleoeléctrica de Laguna Verde se encuentra en la costa del Golfo de México en el km. 42.5 de la carretera federal Cardel-Nautla en el municipio de Alto Lucero, en el estado de Veracruz. Geográficamente se halla a 60 km al noroeste de la ciudad de Xalapa, a 70 km al noroeste del Puerto de Veracruz y a 290 km al Noroeste de la Ciudad de México.

Instalaciones eléctricas residenciales - Generador eléctrico de la central generadora de Laguna Verde

Está conformada por dos unidades, cada una con capacidad de 682.44 MWe; los reactores son tipo Agua Hirviente (BWR-5) y la contención MARK II de ciclo directo. El sistema nuclear de suministro de vapor fue provisto por la General Electric Co., y el turbogenerador por la Mitsubishi Heavy Industries.

La vasija del reactor (1) es un recipiente que trabaja a presión y está construido de acero al carbón con un recubrimiento interno de acero inoxidable, tiene una altura aproximada de 21 m y un diámetro de 5.3 m, su espesor varía de 13 a 18 cm. Dentro de ésta se encuentra el núcleo (2),compuesto de 444 ensambles de combustible, cada uno consta de un arreglo de varillas que contienen pastillas de dióxido de uranio enriquecido aproximadamente hasta el 4.9% con uranio 235. Las pastillas tienen un tratamiento especial para soportar altas presiones y temperaturas, y las varillas que las contienen se fabrican de una aleación especial de zirconio conocida como zircaloy, con un punto de fusión cercano a los 2000 0C. Dentro de las varillas se produce la fisión nuclear en cadena, que libera calor, la regulación de las fisiones estará a cargo de las barras de control (3) y el sistema de recirculación del reactor (7). El calor se utiliza para calentar agua y convertirla en vapor, el cual se dirige por las tuberías a la turbina de alta presión (8) y después a las de baja presión (9).

Debido al proceso de expansión de que sufre el vapor al llegar a la turbina se tiene como resultado vapor a alta velocidad, que impulsa a los álabes de las turbinas, con lo que se obtiene la energía mecánica para mover el generador eléctrico (10). La electricidad generada pasa a través de un transformador (15) para ser enviada a la red eléctrica nacional (16).

Después de mover las turbinas, el vapor se dirige al condensador (12), donde regresa a su estado líquido al ceder su calor al agua de mar tomada del Golfo de México (13) usada como refrigerante. Esta agua regresa al mar (obra de descarga, 14) a través de un canal abierto de 1680 m de longitud para disipar el calor. El líquido producto de la condensación del vapor es enviado mediante bombas (11) al reactor.

Instalaciones eléctricas residenciales - Ciclo termodinámico

Es condición obligada que el personal sea calificado y que la operación esté sujeta a una estrecha supervisión a cargo de algún organismo independiente que vigile continuamente el cumplimiento estricto de las normas vigentes, en el caso de México el organismo regulador es la Comisión Nacional de Seguridad Nuclear y Salvaguardias (CNSNS), que depende de la Secretaría de Energía.

Laguna Verde cuenta con sistemas para garantizar la operabilidad de la planta sin que haya repercusiones negativas en el exterior.

Los sistemas de seguridad de la planta están conformados por diferentes barreras: contenedor primario (de forma cilíndrico-cónico, tiene 1.5 m de espesor y está hecho de acero y concreto, tiene 10 capas de varilla de 2 ¼" de diámetro, y está provisto de un forro de interior de acero de 1 cm de espesor), contenedor secundario (rodea al primario y es conocido como edificio del reactor, está construido de concreto y varillas de acero, tiene paredes de 60 cm de espesor del nivel del suelo hacia arriba y 120 cm en la parte subterránea, la presión en el interior siempre es menor que la atmosférica gracias al sistema de ventilación y aire acondicionado de la instalación), vasija del reactor y varillas de zircaloy; por los sistemas de enfriamiento; los sistemas de protección y control del reactor; la vigilancia de la radiación y los sistemas de control de residuos radiactivos.

La energía nuclear

2013/01/15

Hemos visto que existen diferentes formas de producir la energía eléctrica que utilizamos en nuestras instalaciones eléctricas residenciales, entre ellas se encuentra la de hacerlo a partir de energía nuclear. En esta ocasión profundizaremos en el tema para conocer más sobre este fenómeno físico que el hombre ha utilizado en su beneficio y que ha sido tan polémico a lo largo de su historia.

Instalaciones eléctricas residenciales - Estatus de la energía nuclear comercial

Se defina a la energía nuclear como aquella que se obtiene de las reacciones a nivel nuclear de ciertos elementos químicos. Aquéllas pueden ser espontáneas o provocadas. El elemento más conocido es el uranio, sin embargo, existen otros como el torio, plutonio, estroncio y polonio. Esta energía se produce de dos maneras: por el proceso de fusión o el de fisión.

Antes de describir estos procesos, recordemos algo de historia. Desde los antiguos griegos ya indicaban la existencia de partículas fundamentales, que actuaban como elementos constituyentes de la materia, prediciendo la existencia de unos átomos de diminuto tamaño y de diferentes tipos.
A finales del siglo XIX no se habían encontrado más datos sobre estos elementos, hasta que sir Joseph John Thomson (científico británico, 18 de diciembre de 1856 - 30 de agosto de 1940. Premio Nobel de Física de 1906), junto a otros investigadores, halló en 1897 que los átomos no eran indivisibles como se creía, sino que podían ser separados en componentes más pequeños.

Instalaciones eléctricas residenciales - Sir Joseph John Thomson
Sir Joseph John Thomson (Mánchester, Inglaterra, 18 de diciembre de 1856 - Cambridge, Inglaterra, 30 de agosto de 1940)

Asimismo, descubrió su composición y la existencia de unas partículas que orbitaban en la zona exterior denominadas electrones, cuya masa era mucho menor que la del núcleo; éste, por su parte, tenía carga positiva y su peso suponía casi la totalidad del átomo en conjunto. A pesar de que no fue capaz de determinar la composición del núcleo, quedaron sentadas las bases para posteriores investigaciones, las primeras de las cuales se centraron en la estructura del átomo.

Instalaciones eléctricas residenciales - Modelo atómico de Thomson

El físico y químico británico Ernest Rutherford (30 de agosto de 1871 - 19 de octubre de 1937, se le considera el padre de la Física nuclear) desarrolló en 1911 un modelo basado en un sistema solar en miniatura, en el que el núcleo era una estrella (un sol) y los electrones los planetas. La explicación de su teoría tenía, sin embargo, dos errores: que los electrones emitirían energía al girar, disminuyendo su velocidad y cayendo al núcleo; erróneo porque los electrones ocupan órbitas fijas. Otro error consistía en que los electrones podían saltar de una órbita a otra cualquiera alrededor del núcleo, no obstante, se comprobó que sólo podían ocupar determinadas órbitas siempre iguales.

Instalaciones eléctricas residenciales - Lord Ernest Rutherford
Lord Ernest Rutherford (Brightwater, Nueva Zelanda, 30 de agosto de 1871-Cambridge, Reino Unido, 19 de octubre de 1937)

Instalaciones eléctricas residenciales - Modelo atómico de Rutherford



En 1913 Niels Bohr enunció una nueva teoría atómica para solucionar los fallos de la de Rutherford; consistía en un sistema con un pequeño núcleo alrededor del cual giraban los electrones, pero con órbitas que obedecían a ciertas reglas restrictivas. Según ésas, sólo podría existir un número determinado de órbitas y cada una tendría un nivel de energía, por tanto el electrón que ocupase una órbita concreta poseería la energía correspondiente a ella. De igual manera, no podría saltar de una salvo recibiendo una energía adicional igual a la diferencia entre ambas órbitas; si un electrón cambiara de una órbita de energía superior a otra inferior, emitiría igual cantidad de energía en forma de onda electromagnética, que sería de espectro fijo para los mismos tipos de átomos. A pesar de los adelantos en las explicaciones sobre la estructura de la materia, también contenía errores, aunque hoy es aceptada en líneas generales. Los electrones deberían emitir energía al girar alrededor del núcleo, lo que invalidaba que las órbitas fueran de energía constante.

Instalaciones eléctricas residenciales - Niels Bohr
Niels Henrik David Bohr (Copenhague, 7 de octubre de 1885 - Valby, Copenhague, 18 de noviembre de 1962)
Instalaciones eléctricas residenciales - Modelo atómico de Bohr

La teoría de la mecánica cuántica solucionó estas interrogantes mediante la enunciación del principio de la dualidad onda-partícula, por la cual toda partícula puede comportarse igualmente como una onda.

Después de establecerse el sistema de las órbitas electrónicas, el interés se centró en determinar la estructura del núcleo. En estado normal, un átomo no posee carga eléctrica, sin embargo, se observó que la carga del núcleo era positiva y siempre múltiplo de la carga del electrón; de esta manera, se concluyó que el núcleo estaba compuesto por un conjunto de partículas, cada una de ellas con igual carga que la del electrón, pero positiva. Esas partículas fueron denominadas protones. Según este planteamiento, los átomos tienen el mismo número de electrones que de protones para poder mantener una carga neutra, es decir, cargas negativas en los electrones iguales a cargas positivas en los protones. El hidrógeno posee un electrón en su órbita, por ello posee igualmente un protón en su núcleo; se dedujo así que el peso del protón era aproximadamente dos mil veces superior al del electrón. Sin embargo, esta medida no corresponde con la de otros elementos atómicos. La incógnita de las masas quedó despejada en 1932 cuando James Chadwick, de la Universidad de Cambridge, descubrió un nuevo elemento en el núcleo cuando estudiaba las colisiones entre partículas a alta velocidad, al que se le denominó neutrón. Quedó así definitivamente determinada la estructura del átomo.

Instalaciones eléctricas residenciales - James Chadwick
James Chadwick (20 de octubre de 1891 – 24 de julio de 1974)

El paso entre la determinación de la estructura de la materia y la teoría para la obtención de la energía nuclear por fisión lo dio Albert Einstein. Los experimentos sobre esta teoría demostraron que al bombardear un átomo pesado con otra partícula, las diversas partes en que se separaba tenían en conjunto masas menores que la del núcleo original lo que se libera por una cantidad de energía. Al
aplicar la fórmula de Einstein sobre la diferencia de masas se observaba que los resultados eran coincidentes con los de la energía liberada.

Instalaciones eléctricas residenciales - Albert Einstein
 Alberth Einstein (Ulm, Imperio alemán, 14 de marzo de 1879-Princeton, Estados Unidos, 18 de abril de 1955)

Con el éxito en la ejecución de la teoría de Einstein se había encontrado una fuente de energía de enormes posibilidades, sin embargo, aún era inviable, el motivo era que experimentalmente, siempre se consumía mayor energía que la que se producía. Estas limitaciones fueron superadas en 1939, cuando Lise Meitner y Otto Hahn descubrieron la facilidad con que podía ser partido el núcleo del uranio mediante un neutrón, el cual producía, además, otros tres neutrones que podían dividir a su vez otros núcleos, acelerando la propia radiactividad natural del uranio.

Instalaciones eléctricas residenciales-Lise Meitner y Otto Hahn
Otto Hahn (Fráncfort del Meno, Reino de Prusia, 8 de marzo de 1879 - Gotinga, Alemania Occidental, 28 de julio de 1968) y Lise Meitner (Viena, 7 de noviembre de 1878 - Cambridge, 27 de octubre de 1968)

Superadas las limitaciones para generar energía nuclear aprovechable, en 1942 comenzó a funcionar en la Universidad de Chicago el primer prototipo de reactor nuclear, construido por Enrico Fermi. A finales de 1950 comenzó la utilización práctica de esta energía para producir electricidad con las primeras centrales nucleares.

Instalaciones eléctricas residenciales - Enrico Fermi
Enrico Fermi (Roma, 29 de septiembre de 1901-Chicago, 28 de noviembre de 1954)

La fusión nuclear es una reacción que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división, el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, libera de dos ó tres nuevos neutrones y una gran cantidad de energía que se transforma finalmente en calor. Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados y surge una reacción nuclear en cadena.

Cabe señalar que los núcleos atómicos utilizados son de Uranio-235. El proceso de fisión permite el funcionamiento de los reactores nucleares que actualmente operan en el mundo.

Instalaciones eléctricas residenciales - Ejemplo del proceso de fisión nuclear

La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen y forman un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que, en la actualidad, se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.

La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas. Ambos métodos buscan que la velocidad de las partículas aumente para, así, vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.

Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado plasma físico. Este proceso es propio del Sol y las estrellas, pues se trata de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.

Instalaciones eléctricas residenciales - Ejemplo de proceso de fusión nuclear

La ley de Charles Coulomb

2010/09/15

Instalaciones electricas residenciales - Charles Coulomb

Charles-Agustín de Coulomb fue un físico e ingeniero francés del siglo XVIII. En su honor, la unidad de medida de los electrones lleva su nombre: coulomb que se simboliza con la letra C. Dado que el electrón es una partícula extremadamente pequeña no es posible medirlo por unidad (uno por uno) por lo cual, el coulomb representa un enorme conjunto de electrones: un coulomb equivale a 6.28 trillones de electrones.

En el átomo, las cargas electromagnéticas corresponden a partículas específicas: protones, positiva (+) y electrones, negativa (-).


Si el átomo está constituido por un núcleo de carga positiva predominante (protones), rodeado de una nube de electrones con carga negativa, y los objetos con cargas distintas se atraen, entonces ¿por qué los electrones no se precipitan sobre el núcleo?

Instalaciones electricas residenciales - atomo


La explicación es sencilla: sus fuerzas electrostáticas están en equilibrio, como lo explica la Ley de Coulomb, que establece: "La fuerza de atracción o repulsión entre dos cuerpos con cargas electrostáticas es proporcional a la intensidad de la carga presente en cada uno de ellos, dividida por el cuadrado de la distancia que los separa".

En cargas contrarias significa que mientras mayor sea la magnitud de cada una, mayor será la fuerza de atracción entre ellas y mientras más cerca esté una de otra, la atracción se incrementará. Lo mismo aplica a cargas iguales, pero con repulsión.

Dentro del átomo, por cada protón en el núcleo existe un electrón en la nube circundante, de tal manera que el total de sus cargas se anula, es decir, queda en equilibrio.

Por ejemplo, el átomo de Boro tiene en su núcleo 5 protones (+5) y es circundado por 5 electrones (-5), de modo que 5-5=0, es decir, no predomina ninguna carga electromagnética y el átomo está en equilibrio. Además, la distancia a la que se encuentran las órbitas de los electrones es la exacta para permitir la estabilidad.

En el estudio de la electricidad y las instalaciones eléctricas residenciales es fundamental conocer la Ley de Coulomb, ya que explica cómo se genera la corriente eléctrica como consecuencia de la distancia entre los electrones de la última órbita y el núcleo.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

La estructura del átomo

2010/09/06

Como hemos visto anteriormente, los átomos son esas partículas diminutas, indivisibles e inalterables, de que están formados los elementos existentes en la naturaleza.

Se han desarrollado muchos  modelos de la estructura del átomo para poder estudiarlo, algunos muy simples, otros muy complejos. Como electricistas, no necesitamos conocer los modelos más complejos de la estructura del átomo para entender el comportamiento de la electricidad en las instalaciones eléctricas residenciales. Vamos a analizar el modelo propuesto en 1913 por el físico danés Niels Bohr, ya que es uno de los modelos más sencillos de entender, pues compara la estructura del átomo con la del sistema solar.

Instalaciones eléctricas residenciales - Sistema solar

Según este modelo, los átomos tienen una forma similar a la del sistema solar, con unas partículas alojadas en un centro llamado Núcleo, y otras partículas girando en trayectorias cerradas alrededor del núcleo llamadas Órbitas.

El núcleo está formado por varías partículas, pero las que nos interesan reciben el nombre de protones, a las cuales se les ha asignado un valor positivo, también llamado carga positiva.

A diferencia del sistema solar, donde el sol, ubicado en el centro del sistema, es el astro más grande, las partículas en el núcleo del átomo son mucho más pequeñas que aquellas girando en las órbitas; sin embargo, estas partículas concentran la mayor parte del peso del átomo. Es decir, los protones son las partículas más pequeñas del átomo, pero también son las más pesadas. Podríamos compararlas con pequeñas canicas, con tanto peso que se pegan entre sí, como si estuvieran unidas con “Kola-loka”. Esto evita que se muevan, de hecho, los protones siempre permanecen en su sitio.

La cantidad de protones en el núcleo de un átomo recibe el nombre de número atómico. Este número le otorga a cada átomo su identidad química. Un átomo con un protón es un átomo de hidrógeno, uno con dos protones es helio, con tres protones litio y así sucesivamente siguiendo la escala. También define su ubicación en la llamada tabla periódica de los elementos. Por ejemplo, el cobre tiene 29 protones en el núcleo, y ocupa el lugar número 29 en la tabla periódica.

Ver también: La materia y el átomo

En las órbitas se encuentran las partículas llamadas electrones, a las cuales se les ha asignado el valor o carga negativa. A pesar de ser partículas relativamente grandes, comparadas con los protones, también son las más ligeras; podríamos compararlas con enormes burbujas de jabón, con tan poquito peso, que pueden girar fácilmente alrededor del núcleo.

Un átomo en su estado natural es neutro y tiene un número igual de electrones y protones. Sin embargo, cada órbita puede contener un cierto número máximo de electrones: la primera órbita puede contener hasta 2 electrones, la segunda hasta 8 electrones, la tercera puede tener hasta 18 electrones, la cuarta hasta 32 electrones, la quinta hasta 50 electrones, la sexta hasta 72 electrones y la séptima hasta 98 electrones.  

Los átomos tienen la tendencia a completar sus últimas órbitas con una cantidad de 8 electrones. Esta propiedad es conocida como la regla del octeto. En estos casos, los electrones de la última capa literalmente hacen una “valla” alrededor del átomo e impiden que cualquier fuerza externa que se llegue a presentar los desprenda de su órbita. Cuando algunos átomos se combinan comparten las órbitas externas dando lugar a una especie de órbita común; si esta órbita común adquiere la configuración de 8 electrones, las molécula resultantes reciben el nombre de aislantes

Instalaciones eléctricas residenciales - Átomo de neón
Átomo de neón, con diez protones en el núcleo y diez electrones en las órbitas. La última órbita contiene ocho electrones haciéndolo un elemento muy estable.

Cuando existe un solo electrón en la última órbita, este puede desprenderse más fácilmente del átomo, por eso se le llama electrón libre. Si se manifiesta una fuerza que logre arrancar a los electrones libres de sus órbitas y hacer que se desplacen hacia otros átomos, entonces se produce la carga eléctrica de un cuerpo. Podemos decir que la electricidad está hecha de electrones libres. Los materiales que presentan electrones libres se llaman conductores.

Instalaciones eléctricas residenciales - Átomo de sodio
Átomo de sodio, con electrón libre en la última órbita

Si queremos controlar a la electricidad, primero debemos poder medirla. Como la electricidad está hecha de electrones libres, la unidad elemental para medir carga eléctrica es el electrón libre. ¿Te imaginas cuantos electrones libres hay por ejemplo en un pedazo de alambre de cobre? Sería imposible de contar ya que el electrón libre es una es una unidad muy pequeña; sería casi como contar la cantidad de arena de una playa grano por grano. Sin embargo, cuando necesitamos contar  cantidades de partículas pequeñas (por ejemplo el arroz, el frijol, el maíz o la arena misma) se utilizan "paquetes" (bolsas o cajas) que aunque se miden por volumen, suponemos que pueden contener aproximadamente la misma cantidad de partículas. Por ejemplo, se calcula que en una bolsa con un kilogramo de arroz hay aproximadamente unos 30000 granos. De forma similar, el el sistema internacional de unidades, para medir la carga eléctrica se utiliza una unidad llamada Coulomb (en honor al físico francés Charles Coulomb). Esta unidad equivale a tener agrupados unos 6 billones de billones de electrones libres.

instalaciones eléctricas residenciales - Metáfora para representar la unidad de carga eléctrica (Coulomb)

Si te gustó el artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más