El ser humano siempre ha mantenido una relación estrecha con la energía. Desde su primer contacto con el fuego se dio cuenta de sus múltiples aplicaciones y, por lo tanto, de su valor. Por ello siempre ha tratado no sólo de conservar la energía, sino también de manejarla y obtenerla de distintas fuentes. Por ejemplo, actualmente obtenemos energía del sol, de combustible fósiles, del viento o de reacciones nucleares. Muchas son las ideas que rondan el tema, pero en esta ocasión vamos a mostrarte cómo funciona en realidad la energía nuclear.
La evolución de la humanidad ha estado ligada a la utilización de la energía en sus distintas formas. Sin lugar a dudas, el descubrimiento del fuego, su producción y control marcan un acontecimiento importante en la historia de la sociedad. Cada vez que el hombre descubre una nueva fuente de energía o crea un procedimiento distinto para obtenerla, produce grandes avances tecnológicos y sociales.
Por mencionar algunos recordemos que el aprovechamiento de la fuerza de tracción de los animales permitió el desarrollo de la agricultura y, como consecuencia, algunos pueblos se volvieron sedentarios; la utilización de la energía del viento dio un fuerte impulso a la navegación, al comercio y al intercambio de ideas y conocimientos entre los pueblos de la antigüedad. Gracias a la invención de la máquina de vapor los métodos de producción artesanal pasaron a ser masivos, lo que desembocó en la Revolución Industrial a fines del siglo XVIII y principios del siglo XIX. En el siglo XX dimos un gran salto en este campo gracias a los avances en la física nuclear.
Para producir energía eléctrica basta con mover una serie de espiras de cobre (bobina) en el seno de un campo magnético inducido por un imán. En las terminales de la bobina se generará un voltaje. Al conjunto formado por el campo magnético y la bobina se lo denomina generador, es una máquina que transforma la energía mecánica utilizada para mover la bobina en energía eléctrica. La electricidad no es más que energía mecánica transformada.
Siguiendo este principio, el hombre ha podido obtener gran parte de la electricidad que requiere empleando diferentes medios de generación, una idea común es que cuando decimos nucleoeléctrica obtenemos la energía del uranio, y en realidad es el agente que produce el vapor para mover el conjunto generador.
Existen varios tipos de centrales generadoras de energía eléctrica, entre ellas podemos mencionar: termoeléctricas, de turbogas, de ciclo combinado, de diesel, carboeléctricas, geotermoeléctricas, eólicas, solares y nucleoléctricas.
Central generadora de ciclo combinado |
Central genaradora carboeléctrica |
Central generadora hidroeléctrica |
Toda la materia del universo está formada por moléculas que, a su vez, están constituidas por átomos, pequeñísimas unidades que durante mucho tiempo se consideraron indivisibles. En la actualidad sabemos que los átomos están constituidos por protones y neutrones en el núcleo, y electrones que giran alrededor de éste. El protón y neutrón tienen prácticamente la misma masa, pero se diferencian en que el primero posee una carga eléctricamente positiva y el segundo carece de carga. Protones y neutrones fuertemente unidos entre sí integran lo que se denomina núcleo del átomo, cuya masa es casi igual a la suma de las masas de los protones y neutrones que lo componen. La carga eléctrica total del núcleo es positiva y es igual a la suma de las cargas de sus protones.
Los experimentos sobre la radioactividad (propiedad de emitir radiaciones) de ciertos elementos como el uranio, el polonio y el radio, llevados a cabo a fines del siglo XIX por Henri Becquerel, Pierre y Marie Curie, condujeron en 1902 al descubrimiento del fenómeno de la conversión de un átomo en otro diferente a partir de una desintegración espontánea que ocurría con gran desprendimiento de energía.
Poco después, en 1905, los estudios de Einstein explicaron que dicho desprendimiento de energía era el resultado de la transformación de pequeñísimas cantidades de masa de acuerdo con la equivalencia E=mc². Ambos hechos condujeron a la conclusión de que si se lograba desintegrar a voluntad los átomos de algunos elementos, seguramente se podría obtener cantidades fabulosas de energía.
Una central nucleoeléctrica es una instalación industrial donde se transforma la energía contenida en los núcleos de los átomos en energía eléctrica utilizable. Mientras que en una termoeléctrica el calor se obtiene quemando combustibles fósiles o en una geotérmica, extrayendo vapor natural del subsuelo, en una nucleoeléctrica el calor se obtiene a partir de la fisión nuclear en un reactor.
Mediante el bombardeo con neutrones a los núcleos de los átomos de uranio 235 (U235) se consigue que los núcleos capturen al neutrón y se fisionen (dividan) posteriormente en dos fragmentos; la fisión de cada uno de estos núcleos tiene como resultado un gran desprendimiento de energía calorífica y la liberación de dos o tres nuevos neutrones, que se aprovechan para fisionar otros núcleos similares, a esto se le llama reacción en cadena.
En los reactores de Agua Hirviente (que es uno de muchos tipos que hay) el calor producido por la reacción es utilizado para hervir agua de alta pureza en el interior de un reactor, el vapor que surge es utilizado para hacer girar una turbina acoplada al generador, el cual producirá la electricidad.
Un reactor nuclear consta de los siguientes elementos esenciales: combustible, moderador, refrigerante y material de control. El combustible que se utiliza es uranio 235 (U235) en forma de dióxido de uranio (UO2), con éste se fabrican pequeñas pastillas cilíndricas que se encapsulan en un tubo hermético de aleaciones especiales de circonio (zircaloy), su función es contener los productos de la fisión, además de proteger las pastillas de la corrosión y erosión del fluido refrigerante.
El papel de moderador y refrigerante está a cargo del agua de alta pureza que mantiene inundado el núcleo del reactor. Lo que requiere moderarse es la velocidad de los neutrones producto de la fisión (del orden de 20 000 km/s) mediante choques elásticos para conseguir que éstos estén en condiciones de producir nuevas fisiones (velocidad del orden de 2 km/s) y establecer una reacción en cadena cuya intensidad determinará la cantidad de calor generado en el reactor, dicho calor será evacuado por el agua de alta pureza, por ello también funciona como refrigerante.
El material de control está representado por el carburo de boro contenido en las 109 barras cruciformes de control, el boro tiene la propiedad de atrapar neutrones, lo que lo hace apto para cumplir esta función tan importante en la operación segura del reactor, además son parte activa de un sistema de seguridad que se anticipa a cualquier anormalidad en los parámetros más importantes del reactor deteniendo de inmediato la reacción en cadena.
Los distintos combustibles, moderadores, refrigerantes y materiales de control, que pueden ser utilizados y combinados de diferente manera, han permitido el desarrollo de muchos tipos de reactores, por ejemplo: de agua ligera a presión (PWR, por sus siglas en inglés), de agua pesada a presión (PHWR o CANDU), enfriados por bióxido de carbono y moderados por grafito (GCR), rápidos de cría enfriados por sodio (LMFBR), etcétera.
Entre las ventajas que presentan las centrales nucleoeléctricas encontramos:
- Genera grandes cantidades de energía con pequeñas cantidades de combustible: 1 pastilla equivale a 808 kg de carbón, 4 barriles de petróleo ó 481 m3 de gas.
- Cuesta casi lo mismo que el carbón, por lo tanto no es costosa
- La energía nuclear es segura y confiable
- No produce humo o dióxido de carbono, por lo que no contribuye a aumentar el efecto invernadero
- Produce pequeñas cantidades de desperdicios
- No produce lluvia ácida.
Ver también: La energía nuclear
También existen algunas desventajas:
- En México todavía no producimos uranio enriquecido
- Manejar energía nuclear siempre conlleva un riesgo, por lo que se requiere gran inversión en el área de seguridad
- Hay que ser cuidadosos con el manejo de desperdicios nucleares. Deben ser enterrados y sellados durante varios años para permitir que la radioactividad disminuya
Partes de un reactor nuclear |
Para ilustrar todo lo anterior veamos el ejemplo de la única planta nuclear existente en México, Laguna Verde:
La Central Nucleoeléctrica de Laguna Verde se encuentra en la costa del Golfo de México en el km. 42.5 de la carretera federal Cardel-Nautla en el municipio de Alto Lucero, en el estado de Veracruz. Geográficamente se halla a 60 km al noroeste de la ciudad de Xalapa, a 70 km al noroeste del Puerto de Veracruz y a 290 km al Noroeste de la Ciudad de México.
Está conformada por dos unidades, cada una con capacidad de 682.44 MWe; los reactores son tipo Agua Hirviente (BWR-5) y la contención MARK II de ciclo directo. El sistema nuclear de suministro de vapor fue provisto por la General Electric Co., y el turbogenerador por la Mitsubishi Heavy Industries.
La vasija del reactor (1) es un recipiente que trabaja a presión y está construido de acero al carbón con un recubrimiento interno de acero inoxidable, tiene una altura aproximada de 21 m y un diámetro de 5.3 m, su espesor varía de 13 a 18 cm. Dentro de ésta se encuentra el núcleo (2),compuesto de 444 ensambles de combustible, cada uno consta de un arreglo de varillas que contienen pastillas de dióxido de uranio enriquecido aproximadamente hasta el 4.9% con uranio 235. Las pastillas tienen un tratamiento especial para soportar altas presiones y temperaturas, y las varillas que las contienen se fabrican de una aleación especial de zirconio conocida como zircaloy, con un punto de fusión cercano a los 2000 0C. Dentro de las varillas se produce la fisión nuclear en cadena, que libera calor, la regulación de las fisiones estará a cargo de las barras de control (3) y el sistema de recirculación del reactor (7). El calor se utiliza para calentar agua y convertirla en vapor, el cual se dirige por las tuberías a la turbina de alta presión (8) y después a las de baja presión (9).
Debido al proceso de expansión de que sufre el vapor al llegar a la turbina se tiene como resultado vapor a alta velocidad, que impulsa a los álabes de las turbinas, con lo que se obtiene la energía mecánica para mover el generador eléctrico (10). La electricidad generada pasa a través de un transformador (15) para ser enviada a la red eléctrica nacional (16).
Después de mover las turbinas, el vapor se dirige al condensador (12), donde regresa a su estado líquido al ceder su calor al agua de mar tomada del Golfo de México (13) usada como refrigerante. Esta agua regresa al mar (obra de descarga, 14) a través de un canal abierto de 1680 m de longitud para disipar el calor. El líquido producto de la condensación del vapor es enviado mediante bombas (11) al reactor.
Es condición obligada que el personal sea calificado y que la operación esté sujeta a una estrecha supervisión a cargo de algún organismo independiente que vigile continuamente el cumplimiento estricto de las normas vigentes, en el caso de México el organismo regulador es la Comisión Nacional de Seguridad Nuclear y Salvaguardias (CNSNS), que depende de la Secretaría de Energía.
Laguna Verde cuenta con sistemas para garantizar la operabilidad de la planta sin que haya repercusiones negativas en el exterior.
Los sistemas de seguridad de la planta están conformados por diferentes barreras: contenedor primario (de forma cilíndrico-cónico, tiene 1.5 m de espesor y está hecho de acero y concreto, tiene 10 capas de varilla de 2 ¼" de diámetro, y está provisto de un forro de interior de acero de 1 cm de espesor), contenedor secundario (rodea al primario y es conocido como edificio del reactor, está construido de concreto y varillas de acero, tiene paredes de 60 cm de espesor del nivel del suelo hacia arriba y 120 cm en la parte subterránea, la presión en el interior siempre es menor que la atmosférica gracias al sistema de ventilación y aire acondicionado de la instalación), vasija del reactor y varillas de zircaloy; por los sistemas de enfriamiento; los sistemas de protección y control del reactor; la vigilancia de la radiación y los sistemas de control de residuos radiactivos.
No hay comentarios.:
Publicar un comentario