3 tipos de iluminación | Instalaciones Eléctricas Residenciales

3 tipos de iluminación

2013/02/07

Instalaciones eléctricas residenciales - Foco incandescente

No toda la energía que consume una lámpara se convierte en luz; del mismo modo, tampoco toda la luz que emite es visible para el ojo humano y produce la sensación de luminosidad. Para establecer la diferencia entre los tipos de lámparas que existen y poder comparar su eficiencia tomaremos como referencia el Flujo Luminoso, que es la cantidad total de luz radiada o emitida por una fuente durante un segundo y que produce sensación luminosa en el ojo humano: su unidad es el lumen (lm).

1. Lámpara incandescente común

Todos sabemos que los primeros resultados exitosos de la iluminación producida con energía eléctrica se lograron con el foco incandescente y, aunque varios científicos de la época habían desarrollado ya algunos modelos, se atribuye a Thomas Alva Edison su invención al producir una bombilla que duró encendida 48 horas el 21 de octubre de 1879.

La bombilla eléctrica, foco o bombillo, como se le conoce, está conformada por un filamento (principalmente de wolframio, mejor conocido como tungsteno) que, al conducir la corriente eléctrica, se calienta al rojo vivo y emite luz y calor; para lograrlo, el filamento debe estar en un medio carente de oxígeno, por lo que se coloca dentro de una ampolla de cristal al vacío o conteniendo algún gas inerte que impida que se consuma rápidamente al calentarse.

Instalaciones eléctricas residenciales - Partes de un foco incandescente

Entre las lámparas incandescentes podemos distinguir las que se han rellenado con un gas inerte de aquellas en las que se ha hecho el vacío en su interior. La presencia del gas supone un notable incremento de su eficacia luminosa, dificultando la evaporación del material del filamento y permitiendo el aumento de su temperatura de trabajo. Las lámparas incandescentes tienen una duración normalizada de 1000 horas, una potencia entre 25 y 2000 W, y una eficacia entre 7.5 y 11 lúmenes por watt (lm/W), para las lámparas de vacío, y entre 10 y 20 para las rellenas de gas inerte. En la actualidad predomina el uso de las lámparas con gas, el uso de las de vacío se reduce a aplicaciones ocasionales en alumbrado general con potencias de hasta 40 W.

2. Lámpara de halógeno

Una lámpara común al vacío reduce significativamente su flujo luminoso con el paso del tiempo, pues se desgastan por la evaporación del filamento, el cual se condensa sobre la ampolla de vidrio y le causa un aspecto ennegrecido. Este problema se supera agregando dentro algún gas compuesto por halógenos como el cloro, el bromo o el yodo.

Instalaciones eléctricas residenciales - Lámparas de halógeno

Cuando se añade algún compuesto de halógenos se establece el ciclo de regeneración del halógeno, esto es: el filamento se evapora (wolframio), se une con el halógeno que, en el caso de ser bromo, forma bromuro de wolframio (WBr2), pero, al estar el vidrio de la ampolla tan caliente (se estima que a más de 260 °C), no se adhiere a ella y se mantiene en forma de gas; cuando el bromuro de wolframio entra en contacto con el filamento, se descompone en wolframio que se queda en el filamento y en bromo que pasa al gas de relleno.

Instalaciones eléctricas residenciales - Ciclo del halógeno

Las lámparas de halógeno requieren de temperaturas muy altas para que pueda realizarse el ciclo. Por eso son más pequeñas y compactas que las normales y la ampolla se fabrica con un cristal especial de cuarzo que impide manipularla con los dedos para evitar su deterioro.

Tienen una eficacia luminosa de 22 lm/W, con una amplia gama de potencias de trabajo (150 a 2000 W), según el uso al que estén destinadas.


Las lámparas halógenas se utilizan normalmente en alumbrado por proyección y cada vez más en iluminación doméstica.

3. Lámpara fluorescente

Existen también las lámparas fluorescentes, las cuales se han convertido en el medio de iluminación de uso más generalizado en comercios, oficinas, sitios públicos, viviendas, etc. Emiten luz sin generar apenas calor y pueden producir más lúmenes por watt con menor consumo de energía eléctrica comparadas con las incandescentes.

La tecnología más antigua conocida para este tipo es la del encendido por precalentamiento. De éstas aún quedan millones funcionando en todo el mundo a pesar de los avances tecnológicos experimentados en estos últimos años y las nuevas variantes que se han creado. Sin embargo, su principio de funcionamiento no ha variado mucho desde 1938, cuando se introdujeron las primeras en el mercado.

Instalaciones eléctricas residenciales - Esquema de funcionamiento de una lámpara fluorescente

La eficacia de estas lámparas depende de muchos factores: potencia; tipo y presión del gas de relleno; propiedades de la sustancia fluorescente que recubre el tubo; temperatura ambiente. Ésta última es muy importante porque determina la presión del gas y, en último término, el flujo. La eficacia oscila entre los 38 y 91 lm/W, dependiendo de las características de cada una. La duración de estas lámparas se sitúa entre 5000 y 7000 horas. Su vida termina cuando el desgaste sufrido por la sustancia emisora que cubre los electrodos, hecho que incrementa con el uso, impide el encendido pues necesita una tensión de ruptura superior a la suministrada por la red. Además, hemos de considerar la depreciación del flujo provocada por la pérdida de eficacia de los polvos fluorescentes y el ennegrecimiento de las paredes del tubo, donde se deposita la sustancia emisora.

    Tubo de descarga.

    El cuerpo o tubo de descarga se fabrica de vidrio, con diferentes longitudes y diámetros. La longitud depende, fundamentalmente, de la potencia en watts (W) que desarrolle la lámpara. El diámetro, por su parte, se ha estandarizado a 25,4 mm (equivalente a una pulgada). Los más comunes y de uso más generalizado tienen forma recta, aunque también se pueden encontrar con forma circular.

    La pared interior se encuentra recubierta con una capa de sustancia fosforescente o fluorescente, cuya misión es convertir los rayos de luz ultravioleta (que se generan dentro y que no son visibles para el ojo humano), en radiaciones de luz visible. Para que eso ocurra, su interior se encuentra relleno con un gas inerte, generalmente argón (Ar) y una pequeña cantidad de mercurio (Hg) líquido. El gas argón se encarga de facilitar el surgimiento del arco eléctrico que posibilita el encendido de la lámpara, así como de controlar también la intensidad del flujo de electrones que atraviesa el tubo.

    Casquillo.

    La mayoría poseen en cada uno de sus extremos un casquillo con dos patillas o pines de contactos eléctricos externos, conectadas interiormente con los filamentos de caldeo o de precalentamiento. Estos filamentos están fabricados con metal de tungsteno recubiertos de calcio (Ca) y magnesio (Mg), y su función principal es calentar previamente el gas argón que para que puedan encender.

    El recubrimiento que poseen facilita la aparición del flujo de electrones necesario.

    Arrancador

    El arrancador, como se le conoce comúnmente, se utiliza durante el proceso inicial de encendido en las lámparas que funcionan por precalentamiento. Este dispositivo se compone de una lámina bimetálica encerrada en una cápsula de cristal rellena de gas neón (Ne). Esta lámina tiene la propiedad de curvarse al recibir el calor del gas neón cuando se encuentra encendido con el objetivo de cerrar un contacto que permite el paso de la corriente eléctrica a través del circuito en derivación donde se encuentra conectado.

    Conectado en paralelo a la lámina bimetálica, se encuentra un capacitor encargado de evitar que durante el proceso de encendido se produzcan interferencias en un receptor de radio o ruidos visibles en la pantalla de algún televisor que se encuentre funcionando próximo a la lámpara.


    En las de encendido rápido, que son otra variante de lámparas fluorescentes, no se requiere cebador, pues los electrodos situados en los extremos del tubo se mantienen siempre calientes.

    Otras poseen encendido instantáneo y tampoco utilizan arrancador; este tipo carece de filamentos y encienden cuando se aplica directamente a los electrodos una tensión o voltaje mucho más elevado que el empleado para el resto de las lámparas fluorescentes. Por otra parte, la mayoría de las lámparas fluorescentes de tecnología más moderna sustituyen el antiguo cebador por un dispositivo de encendido rápido, mucho más eficiente que todos los demás sistemas desarrollados anteriormente, conocido como balastro electrónico.

    Balastro

    El balastro (o balasto en España) electromagnético fue el primer tipo de inductancia que se utilizó en las lámparas fluorescentes y sirve para que mantengan un flujo de corriente estable. Consta de un transformador de corriente o reactancia inductiva, compuesto por un enrollado único de alambre de cobre. Los balastros de este tipo constan de las siguientes partes:

    • Núcleo: es la parte fundamental. Lo compone un conjunto de placas de hierro dulce que forman el cuerpo o parte principal del transformador, donde va enrollado alambre de cobre para formar una bobina.

    • Carcasa: es una envoltura metálica protectora. Del devanado de los balastros magnéticos comunes salen dos o tres cables de cobre que se conectan al circuito externo, mientras que de los balastros electrónicos salen cuatro.

    • Sellador: es un compuesto de poliéster que se deposita entre la carcasa y el núcleo. Su función es actuar como aislante entre el devanado, las placas del núcleo y la carcasa.

    • Capacitor o filtro: se utiliza para mejorar el factor de potencia de la lámpara, facilita que pueda funcionar más eficientemente.

Desde el punto de vista de la operación de la lámpara fluorescente, su función es generar el arco eléctrico que requiere el tubo durante el proceso de encendido y mantenerlo posteriormente, limitando también la intensidad de corriente que fluye por el circuito del tubo.

Según la forma de encendido será el tipo de balastro que ocupe. Las formas de encendido ocupadas en los tubos de lámparas fluorescentes más comunes son los siguientes:
  • por precalentamiento (el sistema más antiguo)
  • rápido
  • instantáneo
  • electrónico(el sistema más moderno)

No hay comentarios.:

Publicar un comentario

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más