Instalaciones Eléctricas Residenciales
Mostrando las entradas con la etiqueta magnetismo. Mostrar todas las entradas
Mostrando las entradas con la etiqueta magnetismo. Mostrar todas las entradas

El campo magnético que produce una corriente eléctrica

2022/12/27

Corriente eléctrica en alambre - Instalaciones eléctricas residenciales
Los electrones libres que se mueven en la misma dirección producen corriente eléctrica

La corriente eléctrica


Descubre cómo se genera el campo magnético que produce una corriente eléctrica en los alambres de las instalaciones eléctricas residenciales. En la vecindad de los cuerpos cargados existe una campo eléctrico. Al conectar dos de ellos mediante un conductor, por ejemplo, un alambre de cobre, este campo eléctrico ejercerá una fuerza sobre los electrones del conductor. Y los que se encuentran libres podrán trasladarse de un lugar a otro. Se ha generado, entonces, una corriente eléctrica en el conductor.

La corriente cesará cuando los cuerpos cargados unidos por el alambre se encuentren al mismo potencial. Entonces, para mantener una corriente en el alambre, se necesita conectarlo a dos cuerpos cargados cuya diferencia de potencial permanezca constante en el transcurso del tiempo (dentro de ciertos límites). Por ejemplo, a los polos de una batería.

Si durante el tiempo Δt ha pasado la carga ΔQ por una sección de alambre, la magnitud i de la corriente eléctrica está dada por

i = ΔQt

Donde:
Q = C
t = s
i = C/s

El campo magnético que produce una corriente eléctrica


Alrededor de 1820, el físico danés H.C. Oersted encontró que al colocar un imán en la vecindad de un alambre por el que fluye una corriente, el imán sufre una desviación. Lo que muestra que se ejerce sobre él una fuerza. Así, en la vecindad del alambre se genera un campo de inducción magnética. Si el alambre es recto, las líneas de inducción son circulares normalmente al alambre y con el centro en él.

Campo magnético generado por una corriente que fluye en un alambre recto - Instalaciones eléctricas residenciales
Campo magnético generado por una corriente que fluye en un alambre recto


En 1820, Biot y Savart encontraron la relación cuantitativa entre la inducción magnética en cualquier punto del espacio y la corriente que la produce. Considérese una pequeña longitud Δl de un alambre que lleve una corriente i. Biot y Savart encontraron que la inducción magnética en un punto P a una distancia r del pedazo de alambre está dado por

ΔB = (μ0/π) i Δl sen α/r2

donde ΔB es la induccion magnética en el punto P. α es el ángulo entre r y la longitud del conductor considerada, y μ0 es la permeabilidad del vacío. La inducción magnética es, como ya dijimos, un vector perpendicular al plano formado por r y Δl.

La regla de la mano derecha


Para determinar la dirección de B se emplea la llamada regla de la mano derecha: si el pulgar de esta mano apunta en la dirección de la corriente, entonces, al cerrar la mano, los otros dedos apuntarán en la dirección del campo magnético.

Como una aplicación de la ley de Biot y Savart, calcularemos el campo magnético en el centro de un alambre circular por el que fluye una corriente i.

Campo magnético en el centro de una espira circular por la que fluye una corriente - Instalaciones eléctricas residenciales
Para el cálculo del campo magnético en el centro de una espira circular por la que fluye una corriente i

En este caso, Δl y r son perpendiculares. Así, el campo ΔB producido por el elemento Δl del alambre está dado por

ΔB = (μ0/4π) i Δl /r2

Obsérvese que la dirección de ΔB es perpendicular al plano del alambre y apunta hacia arriba. Imaginemos ahora el alambre dividido en un número grande de pequeños arcos de longitud Δl. Al sumar los campos producidos por cada uno de los elementos, ya que r es constante y ΣΔl = 2πr, se obtiene:

B = (μ0/2) (i/r2)

Energía almacenada en campos eléctricos y magnéticos

2022/12/26

Energía almacenada en campos eléctricos y magnéticos - Instalaciones eléctricas residenciales

Magnetismo


Descubre como calcular la energía almacenada en campos eléctricos y magnéticos. Los imanes permanentes se han conocido desde hace muchos siglos, siendo cuerpos capaces de atraer al hierro, níquel y cobalto, principalmente. Al frotar una aguja con un imán quedará imantada. Y si se suspende de tal forma que pueda girar libremente, la aguja se orientará en una dirección bien definida. Si no hay otros cuerpos magnetizado en su vecindad, la aguja apuntará en la dirección norte-sur, aproximadamente. El extremo que apunta al norte recibe el nombre de polo norte de la aguja. El otro polo recibe el nombre de polo sur.

El polo norte de un imán repelerá al polo norte y atraerá al polo sur de otro imán. En contraste con la carga eléctrica, se encuentra que un polo magnético no puede existir aislado. Todo imán tiene siempre dos polos opuestos (un polo norte y otro sur). En general, en la naturaleza sólo ocurren dipolos magnéticos.

Otra vez, fue Coulomb quien investigó cuantitativamente la fuerza F entre polos magnéticos, encontrando que es proporcional a las intensidades de los polos p1 y p2, e inversamente proporcional al cuadrado de la distancia r entre ellos.

Fuerza entre polos magnéticos - Instalaciones eléctricas residenciales

Donde:
F = N
p1 = p2 = weber = Wb
km = (107/16)A2/N

Si p1 y p2 son polos que tienen igual carga, la fuerza es repulsiva, y si tienen diferente carga la fuerza será atractiva. Además, su dirección es la de la recta que une los dos polos.

Inducción magnética


El hecho de que un imán ejerza una fuerza sobre otro indica la existencia de un campo magnético al rededor de un imán, el cual podemos explorar con la ayuda de un polo norte de un imán muy largo y de tal intensidad que su propio campo pueda despreciarse. Definimos la inducción magnética B en un punto P como el cociente de la fuerza F a la magnitud de la intensidad del polo p del imán de prueba

Inducción magnética en un punto - Instalaciones eléctricas residenciales

Donde:
F = N
p = Wb
B = Wb/m2
μ0 = 4π x 10-7N/A2

La inducción magnética B es una cantidad vectoríal cuya dirección en el punto P es la de la fuerza que actúa sobre el polo norte del imán de prueba. Un polo sur colocado en el punto P experimentará una fuerza cuya dirección es opuesta a la de la inducción magnética en ese punto.

Calculemos la inducción magnética B en un punto P a una distancia r del polo norte de un imán de intensidad p1. Colocando un polo norte de intensidad p en el punto P, la fuerza entre los dos polos es, de acuerdo a la ley de Coulomb:

Fuerza entre polos magnéticos - Instalaciones eléctricas residenciales

La inducción magnética es, por lo tanto:

B = μ0 km p1/r2

La dirección de B coincide con la dirección de la recta que une los polos y apunta de p1 a p. La inducción magnética debida al polo sur del imán se calcula en forma semejante y la inducción total será la suma vectorial de las inducciones producidas por cada uno de los polos.

Momento magnético dipolar en campos eléctricos y magnéticos


El campo de inducción magnética puede representarse en forma análoga al campo eléctrico. Emplearemos en este caso líneas magnéticas y las dibujaremos de tal forma que el número de líneas magnéticas que cruza la unidad de área de una superficie plana normal al vector de inducción magnética en un punto dado, es proporcional a la magnitud de este vector. En el caso de un campo magnético uniforme, las líneas magnéticas serán un conjunto de líneas paralelas e igualmente espaciadas.


Un concepto muy importante es el de momento magnético dipolar de un imán. Considérese un imán muy largo de longitud l, y sea p la intensidad de sus polos. El producto de estas dos cantidades se conoce como momento magnético dipolar M del imán:

M = p l

Además, es un vector cuya orientación coincide con la dirección sur-norte del imán

Al colocar un imán en un campo magnético uniforme de inducción B, sobre cada polo se ejercerá una fuerza magnética, de magnitud pB/μ0, como se muestra en la imagen.

Fuerza que ejerce un campo magnético sobre los polos de un imán - Instalaciones eléctricas residenciales
Fuerza que ejerce un campo magnético sobre los polos de un imán.

Las dos fuerzas constituyen un par, cuya torca T es:

T = (pB/μ0) l sen α = (MB/μ0) sen α

donde α es el ángulo entre el eje del imán y la dirección del campo B. Si el imán se gira por un ángulo Δα, el trabajo realizado será

ΔW = (MB/μ0) sen α Δα

El trabajo que hay que efectuar sobre un imán para que pase de una posición normal a otra paralela a B estará dada por

W = MB/μ0

Puede considerarse que toda substancia consiste de un gran número de imanes elementales. Cuando el material no está magnetizado, los pequeños imanes están orientados de una forma desordenada, mientras que al colocarla en un campo magnético, los imanes elementales tienden a orientarse en la dirección del campo debido a la torca que cada uno de ellos experimanta. El grado de orden en la orientación determina la intensidad de los polos del material que ha sido magnetizado.

Energía almacenada en campos eléctricos y magnéticos


Se puede demostrar que la capacitancia de un condensador de placas paralelas de área A, separadas por la distancia d, y que se encuentra en el vacío, esta dada por

C = ϵ0 A/d

Donde:
C = F
A = m2
d = m
ϵ0 = 8.85 x 10-12 F/m

El trabajo que hay que hacer al cargar un cuerpo es:

W = CV2/2

En el caso del campo eléctrico E uniforme del condensador, la diferencia de potencial V entre las placas está dada por:

V = Ed

de donde se sigue que el trabajo que hay que hacer para cargar un condensador es:

W = Cd2E2 = ϵ0E2(Ad)/2

Pero Ad es el volumen de la región comprendida entre las placas del condensador, de modo que la energía por unidad de volumen en el campo eléctrico del condensador es:

UE = ϵ0E2/2

De modo semejante, puede demostrarse que la cantidad de energía almacenada por unidad de volumen en un campo magnético es:

UM = B2/2 μ0

¿Que te parecieron los conceptos sobre la energía almacenada en campos eléctricos y magnéticos?

James Clerk Maxwell y la teoría electromagnética de la luz

2015/12/22

instalaciones electricas residenciales - james clerk maxwell

"Una época científica terminó y otra empezó con James Clerk Maxwell", dijo Albert Einstein. Heindrich Hertz le llamaba "Maestro Maxwell". Como muchos otros científicos, pensaban que el escocés era un genio. Pero también es uno de los más desconocidos científicos famosos.
Eso a pesar de que su pionero trabajo sobre la naturaleza de la luz cruzó fronteras del conocimiento que hicieron posibles tecnologías de las que dependemos en la actualidad en nuestras instalaciones eléctricas residenciales, desde teléfonos celulares y wifi hasta escáneres y hornos microondas, sin olvidar la radio y la televisión, unos pocos.
Además, su fascinación por el color resultó en la creación de la primera foto a color de la historia.

Instalaciones electricas residenciales - primera fotografia a color
Primera fotografía a color de la historia, obtenida por Maxwell, una cinta de tartán escocés .

Pero, ¿quién era y por qué es tan admirado por sus iguales?
James Clerck Maxwell nació en Edimburgo en 1831, en el seno de una familia escocesa de la clase media, hijo único de un abogado de Edimburgo. Tras la temprana muerte de su madre a causa de un cáncer abdominal (la misma dolencia que pondría fin a su vida), recibió la educación básica en la Edimburg Academy, bajo la tutela de su tía Jane Cay.
Desde pequeño era tan curioso que su tía decía que "era humillante que un niño te preguntara tantas cosas que uno no podía responder".
Con tan sólo dieciséis años ingresó en la Universidad de Edimburgo, y en 1850 pasó a la Universidad de Cambridge, donde deslumbró a todos con su extraordinaria capacidad para resolver problemas relacionados con la física. Cuatro años más tarde se graduó en esta universidad, pero el deterioro de la salud de su padre le obligó a regresar a Escocia y renunciar a una plaza en el prestigioso Trinity College de Cambridge.

Instalaciones eléctricas residenciales - joven james clerk maxwell
James C. Maxwell a los 23 años.

En 1856, poco después de la muerte de su padre, fue nombrado profesor de filosofía natural en el Marischal College de Aberdeen. Dos años más tarde se casó con Katherine Mary Dewar, hija del director del Marischal College. En 1860, tras abandonar la recién instituida Universidad de Aberdeen, obtuvo el puesto de profesor de filosofía natural en el King's College de Londres.
En esta época inició la etapa más fructífera de su carrera, e ingresó en la Royal Society (1861). En 1871 fue nombrado director del Cavendish Laboratory. Publicó dos artículos, clásicos dentro del estudio del electromagnetismo, y desarrolló una destacable labor tanto teórica como experimental en termodinámica; las relaciones de igualdad entre las distintas derivadas parciales de las funciones termodinámicas, denominadas relaciones de Maxwell, están presentes de ordinario en cualquier libro de texto de la especialidad.
Sin embargo, son sus aportaciones al campo del electromagnetismo las que lo sitúan entre los grandes científicos de la historia.
En 1865, basado en las teorías de Michael Faraday, Maxwell propuso la teoría electromagnética de la luz: "todo emisor luminoso produce un campo magnético oscilante perpendicular a otro eléctrico también oscilante, siendo la dirección de propagación perpendicular a ambos".



El magnetismo y la electricidad eran en ese entonces grandes desconocidos, y Faraday estaba haciendo todos los experimentos posibles para explorarlos. Había desarrollado aplicaciones prácticas como el dínamo y el motor, y logró entender detalladamente ambos fenómenos, aportando mucho a la manera en la que los concebimos. Enfocó la atención no tanto en el imán sino en el espacio que lo rodea. Dijo que no era sólo un pedazo de hierro, sino algo más complejo: es el centro de un sistema de invisibles tentáculos curvos que se extienden para atraer o rechazar otros imanes o metales. A ese sistema lo llamó 'campo'. Pero Faraday no pudo ir más lejos. Como era autodidacta había llegado al límite de sus capacidades: sencillamente, no contaba con los conocimientos académicos necesarios. Faraday dio un paso gigante para hacer por la electricidad y el magnetismo lo que Newton había hecho por la gravedad. Lo que faltaba era matemáticas. Faraday hizo contacto con Maxwell por correspondencia y estaba muy contento por haber encontrado a un matemático tan extraordinario; Maxwell aceptó el reto de demostrar matematicamente que la electricidad y el magnetismo estaban conectados, y que los dos juntos (electromagnetismo) podían crear diferentes tipos de ondas que iban a la misma velocidad, la velocidad de la luz.


Reveló también que la luz que los humanos podíamos detectar (la que llamamos "visible") era sólo una parte de la gama de ondas electromagnéticas, que incluyen ondas de radio, microondas, rayos X, rayos Gamma.
Pasó mucho tiempo antes de que los otros científicos aceptar que era una buena idea. Era demasiado radical.

Instalaciones electricas residenciales - maxwell trabajando

Tomó casi 15 años antes de que alguien pudiera mostrar que ese concepto matemático era algo físico que se podía medir y producir en un laboratorio. El científico Heinrich Hertz produjo ondas de radio, tal como Maxwell predijo, las midió y confirmó que iban a la velocidad de la luz. Pero, aunque se complació por haber probado que Maxwell estaba en lo cierto, cuando le preguntaron cuáles eran las ramificaciones, respondió que ninguna.
No obstante, abrió el camino para que un científico realmente brillante, Einstein, tomara las ideas de Maxwell y las desarrollara hasta llegar a su teoría de la relatividad.

Si te gustó el artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

12 personajes clave en la historia del electromagnetísmo

2013/06/05

El electromagnetismo es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron presentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell en el año 1865.

Desde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.

A continuación te presentamos 12 personajes que con sus investigaciones nos ayudaron a tener una mejor comprensión y dominio del fenómeno electromagnético:

  1. Tales de Mileto (640-546 a. C., vivió en Mileto, colonia griega del Asia Menor, actual Turquía) Filósofo griego a quien se atribuye el descubrimiento de las propiedades eléctricas del ámbar.

  2. Instalaciones eléctricas residenciales - Representación de Tales de Mileto

  3. Petrus Peregrinus (siglo XIII, Francia) En 1269 escribió Epistola de Magnete, que es el primer tratado que se conoce sobre las propiedades de los imanes.

  4. Instalaciones eléctricas residenciales - Representación de Petrus Peregrinus

  5. William Gilbert (1544-1603, Inglaterra) En 1600 se publicó su obra De Magnete, el primer estudio científico sobre los fenómenos electrostáticos y magnéticos. Fue el primero en afirmar que la Tierra era un gigantesco imán y el primero en emplear el término eléctrico cuando descubrió esta propiedad en algunos cuerpos.

  6. Instalaciones eléctricas residenciales - Representación de William Gilbert

  7. Charles de Coulomb (1736-1806, Francia) En 1777 inventó la balanza de torsión para medir la atracción eléctrica y magnética y hacia 1785 estableció la ley de Coulomb, principio que rige la interacción entre las cargas eléctricas. En sus memorias expuso teóricamente los fundamentos del magnetismo y de la electrostática.

  8. Instalaciones eléctricas residenciales - Charles Coulomb

  9. Hans Christian Oersted (1777-1851, Dinamarca) Desde 1813 predijo que encontraría una conexión entre los fenómenos eléctricos y magnéticos, pero fue hasta 1819 cuando Oersted y Ampère demostraron la existencia de un campo magnético alrededor de todo conductor atravesado por una corriente eléctrica, descubrimiento que dio inicio al estudio del electromagnetismo como área unificada.

  10. Instalaciones eléctricas residenciales - Hans Christian Oersted


  11. André Marie Ampère (1775-1836, Francia) En 1822 y 1826 se publicaron sus obras. Desarrolló una teoría matemática en la que explica los fenómenos electromagnéticos, amplió las observaciones de Oersted e inventó la bobina solenoide para producir campos magnéticos.

  12. Instalaciones eléctricas residenciales - Representación de André Marie Ampére

  13. Michael Faraday (1791-1867, Inglaterra) En 1831 descubrió la inducción electromagnética, hallazgo que permitió la invención del generador y el motor eléctricos, demostró que un campo magnético cambiante podía producir una corriente eléctrica, entre otras importantes contribuciones que son la base de la tecnología electromagnética.

  14. Instalaciones eléctricas residenciales - Michael Faraday

  15. James Clerk Maxwell (1831-1879, Escocia) En 1873 publicó su obra Treatise on Electricity and Magnetism. Unificó todas las teorías anteriores y desarrolló la teoría electromagnética clásica. Introdujo los conceptos de campo electromagnético y onda electromagnética, con sus ecuaciones demostró que la luz visible era de naturaleza electromagnética y postuló que era posible la radiación electromagnética de otras longitudes de onda.


  16. Heinrich Hertz (1857-1894, Alemania) En 1888 comprobó que las ondas electromagnéticas pueden viajar a través del aire libre y del vacío, detectó y generó ondas de radio y demostró que sólo se diferenciaban de la luz visible por la longitud de onda, la polarización, la reflexión y la refracción.

  17. Instalaciones eléctricas residenciales - Heinrich Hertz

  18. Guglielmo Marconi (1874-1937, Italia) Adaptó el sistema de Hertz para construir un emisor de radio. En 1901 envió señales de radio a través del Océano Atlántico. Marconi fue pionero en el desarrollo de la comunicación por radio para barcos.

  19. Instalaciones eléctricos residenciales - Guglielmo Marconi

  20. Thomas Alva Edison (1847-1931, Estados Unidos) Dio al electromagnetismo aplicaciones prácticas para la telegrafía, la telefonía, la iluminación y la generación de potencia. En sus trabajos comenzó a emplearse la corriente continua para la transmisión de la energía eléctrica.

  21. Instalaciones eléctricas residenciales - Thomas Alva Edison

  22. Nikola Tesla (1856-1943, Imperio Austríaco-Estados Unidos) En 1882 inventó el motor de inducción e inició el desarrollo de varios dispositivos que usaban el campo magnético rotativo, desarrolló la transmisión de la corriente alterna, el sistema polifásico de distribución eléctrica e inventó el motor de inducción, diseñó algunos experimentos para producir rayos X, además de otras aportaciones al campo del electromagnetismo.


Las investigaciones posteriores se encargaron de estudiar el origen atómico y molecular de las propiedades de la materia, así surgió una nueva rama de la física llamada mecánica cuántica y más adelante se completó una teoría cuántica del campo electromagnético conocida como electrodinámica cuántica.

7 tipos de ondas electromagnéticas

2013/06/04

La radiación electromagnética es el resultado de la oscilación de campos electromagnéticos que se propagan a través del espacio en forma de ondas y transportan energía. Las ondas electromagnéticas viajan a la velocidad de la luz, su energía, visibilidad, poder de penetración y otras características están determinadas por la longitud de onda y la frecuencia de las mismas.

Los tipos de ondas electromagnéticas y sus principales aplicaciones son:

  1. Rayos gamma. En la ciencia médica: esterilización de equipo médico, tomografías, radioterapias, diagnosis; en la industria alimentaria: sanidad de los alimentos, etc.

  2. Rayos X. En la ciencia médica: radiología y diagnosis; en la biología: cristalografía, etc.

  3. Radiación ultravioleta. Esterilización de equipo médico, espectrofotometría, en la investigación forense: detección de rastros de sangre, orina, semen y saliva, etc., en dispositivos para el control de plagas, entre otras.

    Ver también: El electromagnetismo

  4. Luz visible. Es la región del espectro electromagnético que el ojo humano puede percibir.

  5. Radiación infrarroja. Equipos de visión nocturna, telecomandos, luz utilizada en las fibras ópticas, comunicación a corta distancia de computadoras y sus periféricos (mouse, teclado, impresoras); en la industria: el secado de pinturas o barnices, secado de papel, termofijación de plásticos, precalentamiento de soldaduras, curvatura, templado y laminado del vidrio, entre otras.

  6. Microondas. Hornos de microondas, radiocomunicaciones, protocolos inalámbricos LAN (Bluetooth y las especificaciones Wi-Fi), televisión por cable, Internet vía cable coaxial, telefonía celular, radares, etc.

  7. Ondas radio. Emisiones de radio FM y AM, televisión, comunicaciones militares, radares, telefonía celular, redes inalámbricas de computadoras y otros usos en las comunicaciones.

Instalaciones eléctricas residenciales - Gráfica del espectro electromagnético

El electromagnetismo

Instalaciones eléctricas residenciales - Manifestación del magnetismo sobre virutas de hierro por acción de un imán

Las palabras electrón y electricidad provienen del griego elektron que significa ámbar, pues los griegos descubrieron que al frotar esta piedra se generaba estática y adquiría la capacidad de atraer objetos livianos.

Las palabras magneto y magnetismo provienen del griego Magnisia, que es el nombre de la región griega donde los antiguos descubrieron que ciertas piedras tenían la capacidad de atraer el hierro, a estos imanes naturales los llamaron piedra magnesia (magnitis lithos en griego).

Una de las interacciones fundamentales del universo conocido es la interacción electromagnética, esta interacción se produce entre las partículas con carga eléctrica y se divide, macroscópicamente, en interacción electrostática e interacción magnética. El electromagnetismo es la rama de la física que describe esos fenómenos físicos macroscópicos.

Construcción de generadores y motores eléctricos


El uso de los generadores y de los motores eléctricos es muy extenso en las instalaciones eléctricas industriales y comerciales. Estos y otros aparatos, como los transformadores eléctricos, funcionan mediante la inducción electromagnética, que consiste en producir una fuerza electromotriz en un medio o cuerpo expuesto a un campo magnético.


En el siglo XIX, los científicos fascinados por la electricidad y el magnetismo hicieron descubrimientos trascendentales para el desarrollo de diversas tecnologías con las que funciona el mundo de hoy: telecomunicaciones, medicina, industria, electrónica y otras áreas en las que tiene aplicación el fenómeno electromagnético.

En 1825, el físico británico William Sturgeon inventó el electroimán basándose en las investigaciones de Hans Christian Oersted.

Las unidades básicas de los generadores y de los motores eléctricos son: el campo magnético (el electroimán y sus bobinas) y la armadura (un núcleo de hierro dulce laminado rodeado por cables conductores enrollados en bobinas).

En un electroimán, el campo magnético se produce mediante el flujo de una corriente eléctrica. El tubo de rayos catódicos, las grúas, los motores eléctricos, los transformadores de corriente eléctrica y los trenes de levitación magnética, son algunos de los dispositivos y máquinas que usan electroimanes. Por ejemplo, en Alemania, Inglaterra, Japón y China existen sistemas de transporte que funcionan por levitación magnética llamados maglev. Este sistema emplea poderosos electroimanes para la suspensión y la propulsión de los trenes.

En los transformadores de corriente eléctrica, la elevación y la disminución del voltaje se efectúa por medio de la inducción del campo magnético de un devanado a otro.

Instalaciones eléctricas residenciales - Ejemplo de un generador eléctrico

9 tipos de enfriamiento de los transformadores eléctricos

2013/01/29

Instalaciones eléctricas residenciales - Transformador

La selección del método de enfriamiento de un transformador es muy importante, ya que la disipación del calor influye mucho en el tiempo de vida y capacidad de carga, así como en el área de instalación y costo. Cualquier método de enfriamiento empleado debe ser capaz de mantener una temperatura de operación suficientemente baja y prevenir “puntos calientes” en cualquier parte.

Un transformador eléctrico es un dispositivo que permite aumentar o disminuir el voltaje basándose en el fenómeno de la inducción electromagnética. Sus descubridores, el físico y químico británico Michael Faraday (1791-1867) y el físico estadounidense Joseph Henry (1797-1878), observaron que se podía generar corriente eléctrica por el movimiento relativo de un imán dentro de una bobina, a este fenómeno se le dio el nombre de inducción electromagnética. La magnitud del voltaje que se induce depende del ritmo con el que el alambre corte las líneas del campo magnético (la variación del flujo magnético).

En su forma más simple están constituidos por dos bobinas devanadas sobre un núcleo cerrado, generalmente de hierro. Las bobinas o devanados se denominan primario y secundario, según correspondan a la entrada o salida del sistema en cuestión.

Cuando hablamos de la relación entre las tensiones y corrientes entre el primario y el secundario de un transformador, sabemos que, prácticamente, la potencia del primario es igual a la del secundario. Sin embargo, sucede que muchas veces un transformador, por cuestiones como la mala calidad de los materiales empleados o su deficiente construcción, etc., no entrega en su secundario toda la potencia absorbida por el primario.

Los transformadores generalmente son enfriados por aire o aceite. Se considera que el aceite es uno de los mejores medios de refrigeración porque posee buenas propiedades dieléctricas y cumple como aislante eléctrico, actúa como refrigerante y protege los materiales aislantes de la humedad y el aire.


De acuerdo con las normas americanas (ASA C57-1948) se han normalizado o definido algunos métodos básicos de enfriamiento, mismos que se usan con la misma designación en México y son los siguientes:

  1. Tipo AA
    Transformador tipo seco con enfriamiento propio. No contiene aceite ni otros líquidos para enfriamiento, el aire es también el medio aislante que rodea el núcleo y las bobinas. Por lo general son fabricados con capacidades inferiores a 2000 kVA y voltajes menores de 15 kV.

    Instalaciones eléctricas residenciales - Transformador tipo AA

  2. Tipo AFA
    Transformador tipo seco con enfriamiento por aire forzado. Se emplea para aumentar la potencia disponible de los tipo AA y su capacidad se basa en la posibilidad de disipación de calor por medio de ventiladores o sopladores.

  3. Tipo AA/FA
    Transformador tipo seco con enfriamiento natural y con enfriamiento por aire forzado. Es básicamente de tipo AA al que se le adicionan ventiladores para aumentar su capacidad de disipación de calor.


  4. Tipo OA
    Transformador sumergido en aceite con enfriamiento natural. En éstos, el aceite aislante circula por convección natural dentro de un tanque que tiene paredes lisas o corrugadas, o bien provistos con tubos radiadores. Esta solución se adopta para transformadores de más de 50 kVA con voltajes superiores a 15 kV.

    Instalaciones eléctricas residenciales - Transformador OA

  5. Tipo OA/FA
    Transformador sumergido en líquido aislante con enfriamiento propio y con enfriamiento por aire forzado. Es básicamente un transformador OA con la adición de ventiladores para aumentar la capacidad de disipación de calor en las superficies de enfriamiento.

    Instalaciones eléctricas residenciales - Transformador OA/FA

  6. Tipo OA/FOA/FOA
    Transformador sumergido en líquido aislante con enfriamiento propio/con aceite forzado - aire forzado/con aceite forzado/aire forzado. Con este tipo de enfriamiento se trata de incrementar el régimen de operación (carga) de transformador tipo OA por medio del empleo combinado de bombas y ventiladores. El aumento de la capacidad se hace en dos pasos: en el primero se usan la mitad de los radiadores y la mitad de las bombas, con lo que se logra aumentar 1.33 veces la capacidad del tipo OA; con el segundo paso se hace trabajar la totalidad de los radiadores y bombas con lo que se logra un aumento de 1.667 veces la capacidad del OA. Se fabrican en capacidades de 10 000 kVA monofásicos 15 000 kVA trifásicos.


  7. Tipo FOA
    Transformador sumergido en líquido aislante con enfriamiento por aceite forzado y de aire forzado. Éste puede absorber cualquier carga de pico a plena capacidad ya que se usa con los ventiladores y las bombas de aceite trabajando al mismo tiempo.

    Instalaciones eléctricas residenciales - Transformador tipo FOA

  8. Tipo OW
    Transformador sumergido en líquido aislante con enfriamiento por agua. En éste, el agua de enfriamiento es conducida por serpentines, los cuales están en contacto con el aceite aislante del transformador y se drena por gravedad o por medio de una bomba independiente. El aceite circula alrededor de los serpentines por convección natural.

  9. Tipo FOW
    Transformador sumergido en líquido aislante con enfriamiento de aceite forzado y con enfriadores de agua forzada. Este tipo es prácticamente igual que el FO, sólo que el cambiador de calor es del tipo agua-aceite y se hace el enfriamiento por agua sin tener ventiladores.
    Hablando de los transformadores de potencia, podemos decir que una disipación de tan sólo 0,5% de la potencia de un gran transformador genera enormes cantidades de calor y es importante considerarlo, ya que éste es un factor clave en el envejecimiento de los materiales aislantes cuando la temperatura pasa de ciertos límites, por lo que se hace necesario el uso de dispositivos de refrigeración.

Generación de corriente eléctrica

2012/09/25

Instalaciones electricas residenciales - central generadora merida III

Como sabemos, la energía eléctrica ha revolucionado la vida en todos sus aspectos y se ha convertido en parte indispensable de nuestro diario quehacer, sería muy difícil imaginar todo el progreso que se ha dado en el mundo sin ella; en este sentido es interesante saber cómo se produce y cómo llega a cada uno de nuestros hogares y centros de trabajo.

En un principio, la generación de energía eléctrica se realizaba en los sitios donde se consumía y poco a poco, con el crecimiento de la población y la demanda de bienes y servicios evolucionó al esquema de la energía centralizada, donde la central de generación de energía se encontraba en la localidad de los consumidores que crecía a su alrededor, sin embargo las restricciones técnicas de la corriente directa y la corriente continua no permitían su distribución a distancias grandes.

Con el tiempo, la generación eléctrica se estructuró como la conocemos en la actualidad: usando corriente alterna y transformadores que permiten llevar la corriente eléctrica a casi cualquier parte; de este modo se han ido creando grandes centrales generadoras a grandes distancias de los centros de consumo, donde el suministro de agua y combustible sean accesibles.


El generador de corriente alterna es un dispositivo que convierte la energía mecánica en energía eléctrica. El generador más simple consta de una espira de alambre que gira, impulsada por un medio externo, en un campo magnético uniforme. El ángulo que forma la superficie de la espira y la dirección del campo magnético cambian conforme va girando la espira, por tanto, el flujo magnético que pasa a través de ella también varía. Esta variación del flujo electromagnético induce una fuerza electromotriz y si existe un circuito externo con una carga como un foco, circulará una corriente eléctrica que lo encenderá.

En la práctica, la generación de la energía eléctrica es más eficiente en sistemas que emplean más de dos fases, porque poseen estas ventajas: La potencia que se transmite en circuitos trifásicos es constante o independiente del tiempo en vez de intermitente como en un circuito monofásico.

Gráfica de la corriente alterna monofásica
Gráfica de la corriente alterna trifásica

Los motores trifásicos arrancan y funcionan mejor que los motores monofásicos.
El método más común de producir corriente alterna es en tres voltajes balanceados de la misma magnitud y desfasados 120 grados.

Un generador de CA elemental consta de un magneto giratorio y un devanado fijo. Las vueltas del devanado se distribuyen por la periferia de la máquina.

Instalaciones electricas residenciales - generador de corriente alterna

El voltaje generado en cada espira del devanado está ligeramente desfasado del generado por el más próximo, debido a que la densidad máxima de flujo magnético la corta un instante antes o después. Si el primer devanado se continuara alrededor de la máquina, el voltaje generado en la última espira estaría desfasado 180 grados de la primera y se cancelarían sin ningún efecto útil.

Por esta razón, un devanado se distribuye comúnmente en no más de un tercio de la periferia; los otros dos tercios se pueden ocupar con dos devanados más, que se emplean para generar otros dos voltajes similares.

Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

André-Marie Ampère

2010/09/20

Instalaciones eléctricas residenciales - André-Marie Ampere

André-Marie Ampère fue un matemático y físico francés del siglo XIX, reconocido por sus aportaciones al estudio de la corriente eléctrica y el magnetísmo.

Ampère fue un niño precoz y, antes de conocer los números, ya hacía cálculos con ayuda de piedritas y migas de pan. Desde niño demostró ser un genio. Siendo muy joven empezó a leer y a los doce años iba a consultar los libros de matemáticas de la biblioteca de Lyon. Su padre, Jean-Jacques Ampère, era un ferviente seguidor de Rousseau y, siguiendo su libro Emilio, o De la educación, le dio una instrucción sin obligaciones: Ampère «nunca fue a la escuela» salvo para dar clases él mismo. Su padre le enseñó ciencias naturales, poesía y latín, hasta que descubrió el interés y el talento de su hijo para la aritmética. Desde los cuatro años ya leía a Buffon y no retoma más que las lecciones de latín (aprendió esta lengua en unas pocas semanas) para poder entender los trabajos de Leonhard Euler y de Daniel Bernoulli.

En 1793 sufrió una profunda depresión por la muerte de su padre quien, retirado como juez en Lyon, se opuso firmemente a los excesos revolucionarios que llevaron al levantamiento de la ciudad contra la Convención Nacional y al sitio de Lyon; al poco tiempo arrestado, fue llevado a prisión y ejecutado el 25 de noviembre.


En 1796 André-Marie conoció a Julie Carron, con quien se casó en 1799. A partir de 1796, Ampère dio en Lyon clases privadas de matemáticas, química e idiomas. En 1801, obtuvo el puesto de profesor de Física y Química (en Francia fundidas en una sola asignatura) en Bourg-en-Bresse, en la École centrale de Ain (actualmente, preparatoria Lalande), dejando en Lyon a su esposa y a su hijo (llamado Jean-Jacques, en honor a su padre). Su esposa murió en 1803. Su pequeño tratado, publicado en 1802, Considérations sur la théorie mathématique du jeu (Consideraciones sobre la teoría matemática del juego) atrajo la atención de Jean Baptiste Joseph Delambre, cuya recomendación le permite ser nombrado profesor de Matemáticas trascendentes en la preparatoria de Lyon (hoy en día, Escuela Ampère).

En 1804 nombrado profesor particular de análisis en la École polytechnique, se instaló en París. En 1806, se casó en segundas nupcias con Jeanne-Françoise Potot, quien murió en Versailles en 1866 a los 88 años. Tuvieron una hija llamada Albine.

En 1808 fue nombrado Inspector General de la Universidad y profesor de matemáticas en la École Polytechnique, volviéndose más popular que el gran matemático Cauchy.

Ampère descubrió que las causas físicas del movimiento de un metal magnetizado (una aguja) al aplicarle una corriente eléctrica, y con ello sentó las bases para el funcionamiento de los aparatos de medición de corriente eléctrica, los amperímetros que actualmente forman parte del multímetro.
También descubrió la interacción entre la corriente eléctrica y el campo magnético: demostró que dos conductores paralelos por los que circula una corriente en el mismo sentido se atraen; mientras que las corrientes en sentido opuesto se repelen, con lo cual no queda duda de que la corriente eléctrica produce un campo magnético.

Inventó también el primer telégrafo eléctrico y, junto a François Arago, el electroimán. Fue gracias a Ampère que se dieron a conocer los términos corriente eléctrica y tensión eléctrica.
En su honor, su nombre le fue dado a la unidad de corriente eléctrica, el amperio.

Ampère murió durante una jornada de inspección en la enfermería del liceo Thiers de Marsella en 1836 a los 61 años. Está enterrado en el cementerio de Montmartre en París.

Si te gustó el artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

Michael Faraday y el campo electromagnético

2010/09/17

Instalaciones electricas residenciales - michael faraday


Michael Faraday fue un físico y químico británico del siglo XIX. Es reconocido por haber descubierto la inducción magnética, fenómeno que permitió la construcción de generadores y motores eléctricos. Faraday también planteó las leyes de la electrólisis, por lo que es considerado como el verdadero fundador del electromagnetismo y la electroquímica.

Faraday fue el primero en deducir y comprobar que el magnetismo y la electricidad son dos aspectos del mismo fenómeno, esto es: el magnetismo produce electricidad y la electricidad magnetiza los cuerpos. Los experimentos de Faraday demostraron que la fuerza que ejercen entre si las respectivas cargas positivas y negativas de un cuerpo crea un campo de fuerza electromagnético a su alrededor.
Para comprobar la existencia del campo de fuerza electromagnético coloca un imán debajo de una hoja de papel. Esparce un poco de rebaba metálica sobre el lugar donde se encuentra el imán. Verás como las rebabas metálicas son atraídas por el campo de fuerza del imán y dibujan las líneas de fuerza electrostática sobre la superficie del papel.

Instalaciones electricas residenciales - limadura de hierro sobre papel con iman



Todos los objetos están cargados electrostáticamente en mayor o menor medida (incluyendo el cuerpo humano) con cargas positivas y negativas repartidas por toda su superficie. Los imanes son objetos especiales que tienen sus cargas electrostáticas polarizadas, es decir, concentradas en dos polos opuestos: uno completamente positivo y otro completamente negativo.

Instalaciones electricas residenciales - iman y lineas de fuerza

Michael Faraday utilizó esta característica peculiar de los imanes para demostrar que las alteraciones en el campo magnético provocadas por ciertos metales son capaces de producir una corriente eléctrica. Al método de Faraday se le conoce como inducción electromagnética, porque las alteraciones en el campo inducen o provocan el movimiento de electrones que da como resultado la corriente eléctrica.

Una contribución muy importante ya que permitió el desarrollo posterior de nuestras actuales instalaciones eléctricas residenciales e industriales.


Si te gustó este artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más