Instalaciones Eléctricas Residenciales

Cálculo y protección de sistemas solares fotovoltaicos

2013/11/11

Instalaciones eléctricas residenciales - Instalador fijando paneles solares
La NOM-001-SEDE-2012 señala que en las viviendas unifamiliares y bifamiliares, las partes vivas de los circuitos de fuentes fotovoltaicas y los circuitos fotovoltaicos de salida de más de 150 volts a tierra deben ser accesibles únicamente a personas calificadas.

El cálculo del circuito y las protecciones, son dos puntos importantes para un sistema solar fotovoltaico. Para una fuente fotovoltaica de corriente continua o un circuito de salida, la tensión máxima debe limitarse. El método en que se calcula es simple; se requiere de un multímetro, guantes y calculadora. Sólo debes obtener la suma de la tensión de circuito abierto de los módulos fotovoltaicos conectados en serie, corregido para la más baja temperatura ambiente esperada. Para módulos de silicio cristalino y multi-cristalino debes multiplicar la tensión nominal del circuito abierto por el factor de corrección proporcionado en la Tabla 690-7. Esta sumatoria corregida se utiliza para determinar la tensión nominal de cables, desconcertadores, dispositivos de protección contra sobre corriente y otros equipos.

Tabla de factores de corrección para temperaturas ambiente

Cuando la temperatura ambiente esperada es menor a –40 °C, o cuando se emplean módulos fotovoltaicos diferentes a los de silicio cristalino o multi-cristalino, debes realizar el ajuste de la tensión del sistema de acuerdo con las instrucciones del fabricante, para lo cual es importante adoptar la cultura de revisar y entender los manuales de los equipos que conectas. Por ejemplo, cuando los coeficientes de temperatura para la tensión de circuito abierto se suministran en las instrucciones para módulos fotovoltaicos, entonces se utilizan en vez de los indicados en la tabla 690-7.

El punto importante en todo lo anterior es que la tensión de los circuitos de utilización de corriente continua debe ser de acuerdo con las limitaciones de tensión de los circuitos derivados como lo menciona la NOM, cuando se trate de instalaciones eléctricas residenciales o diferente de ellas. Recuerda que lo importante es brindar seguridad sin descuidar la operación del sistema ni su costo. Cuando se trata de instalaciones fotovoltaicas en viviendas unifamiliares y bifamiliares, la limitación en tensión es de 127 V, sin embargo, si los circuitos de salida fotovoltaica no incluyen portalámparas, contactos o accesorios, es posible tener una tensión máxima del sistema fotovoltaico de hasta 600 V.

Para otras instalaciones con una tensión máxima del sistema fotovoltaico superior a 600 V se debe cumplir con lo indicado en el artículo 690.

Debido a que en la instalación fotovoltaica puede haber tensiones de 50 V o más, es importante asegurar la protección contra contacto accidental con partes vivas, excepto si la propia NOM requiere o autoriza otra cosa; para este caso las partes vivas de los equipos eléctricos que funcionen a 50 V o más deben estar resguardadas de forma apropiada para evitar los contactos.


Medios de protección:


  • No permitir el acceso mediante divisiones adecuadas, sólidas y permanentes, o enrejados dispuestos de modo que sólo el personal calificado tenga acceso al espacio cercano a las partes vivas.

  • Ubicar las partes vivas en un balcón, una galería o en una plataforma, elevadas y dispuestas de tal modo que excluya a personal no calificado y que se requiera el uso de algún equipo como elevador o escalera para llegar a la ubicación pero sin libre acceso.

  • Mantener una separación mínima de 2.50 metros por encima del piso u otra superficie de trabajo.

Cálculo de la corriente máxima


Otro punto en el cálculo de los circuitos y hablando específicamente de los conductores y protecciones, es el cálculo de la corriente máxima del circuito, el cual debe hacerse conforme lo siguiente para cada caso:

  • La corriente máxima del circuito de la fuente fotovoltaica debe ser la suma de la corriente de cortocircuito de los módulos en paralelo, multiplicado por el 165 por ciento.

  • Existen diferentes formas de determinar la corriente de cortocircuito, la más común es la del bus infinito, sin embargo siempre será recomendable solicitarla al fabricante.

  • Por otro lado, la corriente máxima del circuito fotovoltaico de salida debe ser la suma de las corrientes máximas de los circuitos de las fuentes en paralelo, por el 125 por ciento. Para obtener este dato basta con mirar la placa de especificaciones de los paneles y sumar las corrientes nominales que se indican en ella y multiplicar esta sumatoria por 1.25.

  • Para el circuito de salida del inversor, la corriente máxima debe ser la corriente nominal que indica la placa de datos del equipo.

Donde sean requeridos, los dispositivos de sobrecorriente deben ser seleccionados para conducir al menos el 165 por ciento de la corriente máxima calculada, tomando los límites de temperatura que indica la NOM así como la resistencia mecánica apropiada y aplicando los factores de corrección por temperatura que indica el fabricante, cuando la operación sea a más de 40 ºC.

La ampacidad, es decir la capacidad de conducción de los conductores del circuito, debe ser seleccionada para conducir cuando menos la corriente determinada para las protecciones de sobrecorriente.

La capacidad de los conductores que interconectan en serie a los módulos fotovoltaicos no debe ser menor al 125 por ciento a la suma del valor nominal de corriente de los fusibles individuales, más el 125 por ciento de la corriente de cortocircuito de los otros módulos conectados en paralelo, si un dispositivo de sobrecorriente se utiliza para proteger un conjunto de dos o más circuitos de módulos conectados en paralelo.

El siguiente video nos muestra las formas de protección de los sistemas fotovoltaicos:


Como pudiste ver son varias las consideraciones que debes tener al proyectar un sistema fotovoltaico, hasta aquí se abordará este tema; en una próxima entrada se concluirá con las protecciones requeridas por la NOM para los sistemas fotovoltaicos.

Mediciones en sistemas trifásicos desbalanceados

2013/11/08

Instalaciones eléctricas residenciales - Línea de distribución trifásica

La medición directa y el cálculo en sistemas trifásicos son dos formas de resolver o prevenir problemas en una instalación eléctrica.

En la mayoría de las ocasiones, en instalaciones trifásicas no se verifica el balance de cargas y esto repercute en el aumento de la factura por energía eléctrica, porque al alimentar una mayor cantidad de cargas con una sola fase elevamos el consumo.

El problema viene desde la distribución de cargas en las líneas de baja tensión, ya que -aunque se distribuyan de forma ordenada- algunos hogares cuentan con un mayor número de equipos alimentados; cuando se verifica el transformador es fácil detectar un desbalance de cargas, tal como se muestra en la siguiente imagen.

Instalaciones eléctricas residenciales - Distribución de cargas en sistema trifásico

Los problemas para el usuario son evidentes. ¿Pero, en qué afecta este fenómeno al sistema eléctrico? Un desbalance de cargas genera sobretensiones transitorias o picos de voltaje, armónicas y distorsiones en general, sobre la forma de onda eléctrica, adicional al daño físico que causa: calentamientos en conductores, degradación de aislamientos y envejecimiento en general de las líneas de transmisión y distribución eléctrica.

¿Cómo detectar un desbalance? La forma de poder determinar si las cargas están o no desbalanceadas es con medición directa, utilizando simplemente la función "amperímetro" de un multímetro de gancho, con el cual se mide sobre las fases existentes.

Se recomienda el uso del multímetro de gancho debido a que no es necesario abrir la línea de alimentación para realizar la medición; a diferencia del amperímetro normal con dos puntas, y el cual debe conectarse en serie con la línea.

Adicional a la medición directa, es importante determinar en términos matemáticos los parámetros eléctricos (si existen desbalances en el sistema).

En un sistema trifásico existen 3 fases más el neutro, a esta conexión se le conoce como trifásica a 4 hilos. Al compartir el neutro, a las cargas se les conoce como conexión en estrella, representada con un “Y”.

En un sistema trifásico, realizar una redistribución de cargas o balance de ellas permite reducir costos al mantener en operación similar a todas las fases.


Partiendo de esta idea, se sabe que por las leyes de electricidad -específicamente las de Kirchhoff- existen tensiones y corrientes de línea, así como una corriente adicional que tiene que ver con el neutro y por el cual no debe existir valor de corriente.

Ejemplo:

Instalaciones eléctricas residenciales - Diagrama de sistema trifásico en estrella

Aplicando la Ley de Ohm y un procedimiento matemático para números polares y no polares, se llega a los siguientes resultados:

NOTA IMPORTANTE: Al realizar este análisis se debe tener mucho cuidado, sobre todo si no sabes con exactitud la impedancia de las cargas, porque se puede llegar a resultados diferentes y equivocar el diseño. Así se obtiene una corriente resultante en el neutro después de aplicar la ley de corrientes de Kirchhoff en el neutro.

Instalaciones eléctricas residenciales - Cálculo de corriente de desbalanceo en el Neutro

En este punto es evidente que lo anterior es muy útil para el diseño, sin embargo cuando ya se tiene la instalación hecha y presenta calentamientos, caídas de tensión o picos de tensión transitoria, se utiliza medición directa.

Como parte del monitoreo que debe comprender un plan de mantenimiento, es posible incluir en el sistema eléctrico equipo que permite recabar información para analizar con detenimiento y proceder entonces a una posible reconfiguración o ampliación de la instalación. Los dispositivos más usados son los analizadores o medidores. Estos elementos funcionan de forma similar al medidor de CFE, pero la conexión no es tan similar, ya que es necesario entregar una señal de referencia e instalar transformadores de corriente o TC´s a cada fase para determinar los consumos derivados de un posible desbalance de cargas.

Instalaciones eléctricas residenciales - Analizador/Medidor de líneas trifásicas

Físicamente los medidores se instalan cerca de los tableros de distribución y en ocasiones es posible enlazarlos hacia la red por medio de cable UTP, llegando a los centros de monitoreo que permiten el análisis en tiempo real de corriente, potencia en sus tres tipos, tensión de alimentación, factor de potencia, entre otros.

Estas dos formas de determinar un posible desbalance de cargas no se contraponen debido a que el cálculo matemático aplica para diseño, y la medición directa para situaciones donde la instalación ya existe y se pagan cantidades muy altas por el consumo de energía. Es decir, uno prevé esta situación y otro permite programar acciones para minimizar el efecto; uno es una acción preventiva y otro es una acción correctiva.

Instalaciones eléctricas residenciales - Analizador/Medidor junto a centro de carga

En resumen, si la instalación esta en fase de proyecto, se recurre al cálculo; cuando la instalación ya existe se utilizan equipos de medición y análisis de parámetros eléctricos.

El siguiente video nos muestra un ejemplo del cálculo de un sistema trifásico desequilibrado con conductor neutro:


Los 10 mandamientos del electricista.

2013/11/07

Instalaciones eléctricas residenciales - Niños caracterizados como electricistas.

Un buen electricista siempre procura cada día estar mejor preparado, cuidando mucho la seguridad y la calidad de su trabajo, para poder brindar a sus clientes instalaciones eléctricas residenciales más eficientes y sobre todo, más seguras.

A continuación te presentamos los 10 mandamientos del electricista responsable:

Un buen electricista...

  1. Siempre cumple con las fechas de entrega que promete para sus proyectos.

  2. En caso de que se presente un imprevisto mientras trabaja, avisa lo ocurrido a su cliente y lo resuelve cuanto antes.

  3. Adquiere materiales y herramientas de reconocida calidad.

  4. Si quien te contrata pide lo más barato, explica la importancia de optar por las marcas que garantizan seguridad.

  5. Cobra lo justo por su trabajo, ni más ni menos.


  6. Atiende y pone especial atención cuando le explican las necesidades de un proyecto, para ofrecer la mejor solución.

  7. Si tiene alguna duda, consulta a alguien más preparado. No experimenta.

  8. Nunca deja un trabajo para mañana si lo puede terminar hoy.

  9. Sabe de la importancia de tener un buen descanso por la noche, para rendir al 100% durante el día.

  10. Se sigue preparando para brindar un mejor servicio.

El siguiente video nos habla de la importancia de actuar con Ética en la profesion de Técnico Electricista:


Si te gustó el artículo, tengo un anuncio que te puede interesar 👇
Oferta Master Class Principios de Instalaciones Eléctricas - Instalaciones Eléctricas Residenciales

5 tipos de quemaduras y cómo atenderlas

2013/11/06

Instalaciones eléctricas residenciales - Paramédico vendando una quemadura en el pie de un accidentado

Te presentamos una serie de pasos que te ayudarán a reaccionar cuando se presente un accidente de este tipo.

Antes que nada hay que aclarar: ésta es sólo una guía de orientación, en la que se enlistan medidas básicas como referencia. Lo recomendable es que sea un especialista médico (doctor, enfermera o paramédico), quien atienda directamente a las personas con quemaduras. Si el evento acaba de suceder, no sabes qué hacer o no conoces la gravedad, mejor llama a los servicios de emergencia de tu localidad.

En general, estas son las 6 cosas que NO debes realizar ante una quemadura:

  1. No aplicar en la quemadura mantequilla, ni manteca, aceite, grasa, huevo, jitomate, cebolla, miel, hielo, telaraña, lodo, como tampoco tepezcohuite y ningún otro tratamiento casero. Está comprobado que sólo se incrementan los riesgos y daños.

  2. No soples ni tosas sobre la quemadura.

  3. No toques la piel afectada.

  4. No rompas las ampollas.

  5. No administres medicamentos. Únicamente un doctor podrá prescribir un medicamento.

  6. Si hay quemaduras en las vías respiratorias, no coloques una almohada debajo de la cabeza de la persona, porque esto puede cerrarlas.


A continuación te presentamos 5 tipos distintos de quemaduras y cómo tratarlas en cada caso:

1) Quemaduras solares


  1. Remoja la superficie con agua fría, como sale de la llave.

  2. Aplica compresas de agua fría periódicamente.

  3. Aplica crema humectante, no grasa.

  4. Proporciona muchos líquidos.

  5. Evita mayor exposición al sol.

  6. Las quemaduras menores pueden sanar sin tratamiento adicional, pero de persistir molestias acude con un profesional médico.

2) Quemaduras menores


  1. Sumerge de inmediato el área afectada en agua fría, como sale de la llave, para enfriar hasta por 20 minutos el área quemada. Esto reducirá dolor, inflamación y evitará la profundización.

    Advertencia: No mojes a personas con quemaduras eléctricas o químicos como sosa o cal.

  2. Luego de lavar y remojar en agua, cubre la quemadura con una venda estéril o tela limpia.

  3. Evita presiones o fricciones sobre la quemadura.

  4. En la recuperación, utiliza crema humectante, no grasa.

  5. Mantén la herida supervisada, limpia, seca y al aire libre.

  6. Las quemaduras menores pueden sanar sin tratamiento adicional, pero de persistir las molestias acude con un profesional médico.



Instalaciones eléctricas residenciales - Niño mostrando vendaje por quemadura en un dedo

3) Quemaduras mayores


  1. Si alguien se prende fuego, haz que se detenga, se tire al suelo y ruede. Envuelve a la persona con una manta gruesa para apagar las llamas.

  2. Verifica que la persona ya no esté en contacto con la fuente de las quemaduras.

  3. Llama a los servicios locales de emergencias. Mantén a la persona calmada y despierta. Si en el accidente ocurrieron golpes, caídas o pérdida del conocimiento, deja que sean los servicios de emergencia los que valoren y atiendan.

  4. No sumerjas una quemadura grave en agua fría, puede causar shock; sólo salpícala o usa una gasa húmeda para enfriar la superficie, sin friccionar.

  5. Retira la ropa quemada, pero no quites la que esté pegada a la piel.

  6. Retira con cuidado anillos, collares, pulseras, reloj, prendas apretadas y cinturones que queden sobre el área afectada, antes de que se empiece a inflamar.

  7. Cubre el área de la quemadura con un vendaje estéril o manta limpia y envuelve a la víctima con una cobija.

  8. Si los dedos de las manos o de los pies sufrieron quemaduras, sepáralos con gasas estériles o vendas no adhesivas.

  9. Eleva el área quemada por encima del nivel del corazón y evita presiones o fricciones.

  10. Llama a una ambulancia o traslada a la persona a la unidad de trauma o urgencias más cercana.

4) Quemaduras eléctricas


  1. Desconecta la fuente de energía, no toques a la persona hasta estar seguro que ya no hay corriente eléctrica.

  2. Llama a los servicios locales de emergencias. Si en el accidente ocurrieron golpes, caídas o pérdida del conocimiento, deja que sean los servicios de emergencia los que valoren y atiendan.

  3. No apliques agua ni medicamentos o remedios caseros.

  4. Retira la ropa quemada, pero no quites la que esté pegada a la piel.

  5. Retira con cuidado anillos, collares, pulseras, reloj, prendas apretadas y cinturones que queden sobre el área afectada, antes de que se empiece a inflamar.

  6. Cubre el área de la quemadura con un vendaje o manta estéril y envuelve al paciente con una cobija.

  7. Si los dedos de las manos o de los pies sufrieron quemaduras, sepáralos con vendas no adhesivas.

  8. Llama a una ambulancia o traslada a la persona a la unidad de trauma o urgencias más cercana.


Instalaciones eléctricas residenciales - Jóvenes sosteniendo cerillos encendidos

5) Quemaduras químicas


  1. Llama a los servicios locales de emergencias.

  2. Remoja de inmediato el área afectada en agua fría, como sale de la llave, para enfriar hasta por 20 minutos el área quemada. Esto reducirá dolor, inflamación y evitará la profundización.

    Advertencia: No mojes a personas con quemaduras por químicos como sosa y cal, sólo sacude y retira el agente que produjo la lesión. Si tienes dudas, consulta a un especialista.

  3. Retira la ropa quemada, pero no quites la que esté pegada a la piel.

  4. Retira con cuidado anillos, collares, pulseras, reloj, prendas apretadas y cinturones que queden sobre el área afectada, antes de que se empiece a inflamar.

  5. Cubre el área de la quemadura con un vendaje o manta estéril; envuelve a la persona con una cobija.

  6. Si los dedos de las manos o de los pies sufrieron quemaduras, sepáralos con gasas estériles o vendas no adhesivas.

  7. Eleva el área quemada por encima del nivel del corazón y evita presiones o fricciones.

  8. Llama a una ambulancia o traslada a la persona a la unidad de trauma o urgencias más cercana.
El siguiente video forma parte de un taller para el cuidado de la salud y nos hablaremos de los primeros auxilios para quemaduras en primer, en segundo y tercer grado.


Diodos emisores de luz, mezcla de electrónica y alquimia moderna.

2013/11/05

Instalaciones eléctricas residenciales - Diodo emisor de luz

Una de las cosas que más me inquieta es el hecho de que todo lo conocido en el Universo, incluidos los seres vivos, estamos hechos del mismo tipo de partículas. Estas partículas fundamentales son los átomos, y sólo es el número de átomos enlazados con una precisión inmejorable lo que marca las diferencias para crear los elementos que componen a la materia en sus distintos estados.

Los pequeños enlaces entre átomos encierran la fuerza más grande conocida por el hombre; y es precisamente ese fino equilibrio entre materia y energía lo que obliga a un amante de la luz a estudiar con detenimiento la tabla periódica de los elementos.

Los “alquimistas modernos” han organizado todos los elementos que conocemos en una tabla que agrupa a los que comparten cualidades similares, esto nos permite comprender las capacidades y límites físicos de cada grupo de elementos y como resultado conocemos su comportamiento al ser afectado por las distintas manifestaciones de la energía, tales como el calor, la electricidad, y desde luego la luz.

La energía fuera de control es peligrosa e inútil, en cambio la energía entregada  de manera gentil y en proporciones adecuadas es lo que permite al hombre iluminar y mover su mundo. Aunque el grupo de los metales como el aluminio, el cobre y el oro son excelentes conductores de energía, en esta ocasión hablaremos de aquellos que la conducen de una manera extremadamente controlada, lo que ha permitido alcanzar grandes avances en la electrónica y la iluminación.

Mediante la combinación de los elementos de los grupos conocidos como metales, metaloides y no metales, el hombre ha desarrollado un artefacto llamado diodo, que a través de una relación PN (positivo-negativo) le permite conducir la energía en una sola dirección, teniendo mayor control sobre la cantidad y la dirección que debe tomar la energía en el circuito electrónico.

Los elementos con los que se fabrica  un diodo, principalmente el Silicio y el Galio, son combinados con un metal para conseguir una saturación considerable de una carga positiva (P) y una carga negativa (N).

En el extremo conocido como ánodo se coloca una fina mezcla de material de carga positiva y en el otro extremo, conocido como cátodo, se debe colocar una porción igual de material de carga negativa. Los materiales deben quedar aislados por un separador que evita que se combinen, permitiendo así el paso de la energía de un extremo a otro. La combinación de los materiales anularía la polarización del diodo, y éste permitiría el paso de la electricidad de manera libre en ambos sentidos.

Ver también: Conociendo un poco de la historia del LED

Los diodos trabajan con corrientes eléctricas muy bajas, por lo que generalmente se incluye una resistencia en el circuito que evita la avería provocada por una sobrecarga eléctrica. También es importante conocer que la polarización incorrecta de un diodo provocaría que la fina relación PN se rompa y, por consiguiente, dejaría de funcionar. Para evitar este trágico suceso, se ha llegado a la convención de que el ánodo siempre contará con un filamento de conexión “patita” de mayor longitud que el del cátodo.

Todos los diodos emiten radiaciones en forma de fotones, como el diodo de Arseniuro de Galio (GaAs) que emite una radiación infrarroja con una longitud de onda de 940 nm, lo que lo ubica fuera de rango visible para el ojo humano. El fenómeno que cautiva a los amigos de las sombras, sucede cuando se hace circular una corriente eléctrica en algunos metaloides y no metales. Éstos tienen la impresionante capacidad de emitir una radiación electromagnética, a este fenómeno se le conoce como electroluminiscencia.

Instalaciones eléctricas residenciales - LEDs de 5 mm, 5 colores

Con la inclusión del Fósforo se logró conseguir el LED de color amarillo, que al combinarlo con el Galio (Ga) de color rojo desemboca en el desarrollo de los LEDs anaranjado, amarillo y rojo hechos de Arseniuro Fosfuro de Galio (GaAsP). Estos LEDs eran de baja intensidad por lo que, durante cuatro décadas, sus aplicaciones se limitaron principalmente a controles remotos y señales luminosas en tableros de electrodomésticos.

Los LEDs ultravioletas, hechos de Carbono (C), y los de color azul, fabricados de Nitruro de Galio e Indio (InGaN), con una longitud de onda de 450 nm; y el de Carburo de Silicio (SiC) en los 480 nm, se desarrollaron en la década de los noventa y con esto fue posible desarrollar el modelo RGB en los LEDs que permite la combinación de los colores rojo, verde y azul, obteniendo una gama de miles de colores incluyendo los blancos.

Instalaciones eléctricas residenciales - Lámpara LED

Debemos tener en cuenta que los elementos con los que se fabrican los LEDs poseen límites físicos que impiden alcanzar los colores teóricos necesarios para la reproducción del modelo RGB. Por esta simple razón es necesario tener extremo control de calidad de los materiales y los procesos de fabricación, ya que si la mezcla de materiales es de mala calidad se obtendrá como resultado una luz de mala calidad.

Para integrar los LEDs en la iluminación se han realizado grandes desarrollos integrando ópticas súper finas a estos dispositivos que nos permiten entregar de manera eficiente la luz y nos ofrecen  una gama completa de temperaturas de color y una alternativa real en la iluminación profesional, sin olvidar la constante búsqueda de una fuente de luz sustentable y amable con el medio ambiente.

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más