Instalaciones Eléctricas Residenciales

Carga desequilibrada en sistema trifásico conectado en estrella

2013/06/27

Instalaciones eléctricas residenciales - Líneas de distribución aérea

La importancia de tener cargas balanceadas conectadas a los sistemas trifásicos radica en que evitan serios problemas de operabilidad. El principal: desbalance en las tensiones de la fuente de suministro, ya sea el propio generador o bien la salida de un transformador.

La energía eléctrica se produce en centrales generadoras de distintos tipos: hidroeléctricas, geotérmicas, nucleares, entre otras. En ellas se hacen girar turbinas por golpe de agua o vapor, dependiendo de la central; en el caso de las nucleares el funcionamiento es a través de reactores. La transformación de movimiento mecánico a energía eléctrica se logra con la interacción de las turbinas como rotor del generador. Después de ello, se pasa por transformadores elevadores de tensión y se envía por las torres de transmisión; en ocasiones llega a subestaciones elevadoras para compensar la pérdida de tensión debida a la longitud e impedancia de las líneas de transmisión. Posteriormente llega a subestaciones reductoras o de distribución que bajan el nivel de tensión y envían la tensión reducida a las líneas de distribución que son los tres conductores que vemos en los postes fuera de nuestros domicilios y que se encuentran por arriba de los transformadores de distribución, en ellos se conecta el primario del transformador de distribución y salen 4 conductores a la red de distribución en baja tensión.

Debido a que los devanados del secundario del transformador de distribución están conectados en estrella, tenemos entonces 3 fases y 1 neutro. Es en este punto donde nuestro hogar recibe el suministro de energía eléctrica, a través de la acometida que -como sabemos- tiene un solo hilo de dos polos concéntricos: el desnudo corresponde al neutro y el aislado al cable de fase. Como era de esperarse, las cargas (vistas desde el sistema de distribución) son nuestros hogares; actualmente cada uno es distinto de otro.

Entremos pues en materia: los sistemas trifásicos desbalanceados con cargas conectadas en delta o en estrella, son objeto de un cuidadoso estudio porque ocasionan problemas desde el punto de vista de operación de los sistemas.

El desequilibrio o desbalance que se presenta se debe a que las impedancias por fase son diferentes, o porque los voltajes de línea o de fase difieren entre ellos en magnitud. La simetría que se presenta en los sistemas trifásicos balanceados no se establece para el caso de los sistemas desbalanceados.

Vamos a estudiar los sistemas desbalanceados considerando cargas conectadas en estrella, esto debido a que solo se ha tratado el caso de cargas balanceadas.


Los sistemas desequilibrados con carga en estrella de 4 hilos, que obviamente tienen el conductor del neutro, transporta la corriente de desbalance y mantiene la magnitud del voltaje de línea a neutro a través de las fases de la carga. Lo anterior lo estudiaremos usando el Diagrama 1.

Instalaciones eléctricas residenciales - Diagrama de sistema trifásico de cuatro hilos en estrella

La notación polar se representa con una magnitud asociada a un ángulo: Z = a∠bº. Las operaciones directas con esta representación son la multiplicación y división, la suma y resta debe hacerse con calculadora o pasando a la forma trigonométrica:

Z = a'± jb' , donde a' = acosb y jb' = asenb.

Antes de continuar con el análisis explicaremos brevemente las notaciones anteriores. Cuando se tiene una carga conectada a un sistema, esta puede estar formada de cargas individuales, tal como ocurre en un domicilio donde tenemos televisores, licuadoras, planchas, refrigeradores, microondas, teléfonos inalámbricos, computadoras, bombas de agua, etcétera. El efecto de cada carga se manifiesta de distinta forma, por ejemplo: si conectamos una plancha, el factor de potencia es aproximadamente la unidad; es decir, la energía se aprovecha casi en su totalidad a diferencia de una licuadora, donde su factor de potencia es menor a la unidad y no aprovecha de buena forma la energía que se le suministra. A la primera carga se le denomina carga puramente resistiva y a la segunda se le conoce como carga predominantemente inductiva. Para hacer un análisis de las cargas es necesario representarlas de forma matemática, es por ello que se usa una notación matemática conocida como números complejos en forma polar, de esta manera podemos sumar el conjunto de cargas y representarlas como una sola conectada por cada fase.

Dicho lo anterior continuemos con el análisis; la fuente generadora presenta secuencia positiva ABC y la tensión de fase de 120 V, se desea conocer todas las corrientes de línea considerando la tensión de fase EaN como referencia a cero grados. De tal forma que las tensiones de fase son:

Instalaciones eléctricas residenciales - Tensiones de fase en sistemas trifásicos

Para determinar las corrientes de línea consideramos las tensiones de fase y sus correspondientes impedancias, aplicando la Ley de Ohm tenemos que:

Instalaciones eléctricas residenciales - Cálculo de corrientes de línea en sistemas trifásicos

La corriente por el hilo neutro se obtiene aplicando la Ley de Corrientes de Kirchhoff en el punto
común de la estrella, por lo tanto es:

Instalaciones eléctricas residenciales - Cálculo de corriente en neutro de sistema trifásico conectada en estrella

De este resultado es importante mencionar que, en este caso, el desequilibrio de las cargas origina
una corriente que circula por el hilo neutro, lo cual contraviene a los principios de cero corriente
en el neutro en la conexión en estrella.

La secuencia de las fases de una fuente trifásica puede tener dos secuencias: positiva, que sigue el movimiento de las manecillas del reloj, de forma que las fases se ordenan como ABC y la negativa, en sentido contrario a las manecillas del reloj quedando como CBA.

Instalaciones eléctricas residenciales - Central generadora de energía eléctrica

Interruptores de 3 vías ¿puentes comunes o corto circuito?

2013/06/26

Instalaciones eléctricas residenciales - Interruptor de tres vías también conocido como apagador de escalera

En esta ocasión hablaremos de la conexión de los interruptores o apagadores de 3 vías, los cuales son muy frecuente para controlar lámparas en escaleras, recámaras, pasillos largos y cualquier lugar en donde se requiera controlar una o más lámparas desde dos lugares. Prende encender desde un lugar y apagar desde otro.

Existen dos métodos de conexión de los interruptores 3 vías: en cortocircuito y puentes comunes, los analizaremos y veremos cuál es el adecuado y por qué debemos emplearlo en este tipo de instalaciones.

Instalaciones eléctricas residenciales - Conexión de apagadores de tres vías en corto circuito

Además de ser una conexión insegura, no debemos ignorar lo que dice la Norma Oficial Mexicana NOM-001-SEDE vigente, Instalaciones Eléctricas (utilización), en su artículo 380-Desconectadores:

Esta conexión es posiblemente la más común en las instalaciones eléctricas en México, pero no por ello la mejor. En la figura 1, tenemos Fase y Neutro en el interruptor, donde lo único que impide que se provoque un cortocircuito franco es la distancia que existe entre los puntos de conexión internos del interruptor, sin embargo muchas veces se produce un arco eléctrico que va desgastando los contactos del interruptor y reduce su vida de operación, lo que con frecuencia provoca que se queden pegados los contactos móviles con los contactos fijos del interruptor.

Muchos electricistas podrían pensar que este método permite ahorro de cable cuando en la misma instalación podemos tomar el cable de fase y el neutro de una salida de contacto eléctrico o de la caja de conexiones y llevarlas hacia el interruptor, pero está claro que no podemos exponer la seguridad de nuestro hogar por el ahorro de algunos metros de cable.


380-2. Conexiones de los desconectadores

a) Interruptores de tres y de cuatro vías. Los desconectadores de tres y de cuatro vías deben estar conectados de modo que la desconexión se haga sólo en el conductor de fase del circuito.¹

La conexión en cortocircuito no cumple con el artículo 380-2 de la Norma, y nos obliga a descartar por completo este tipo de práctica al instalar un interruptores de 3 vías.

Conexión en puentes comunes

Sin duda es la conexión más segura y permitida para los interruptores de 3 vías. En esta conexión sólo se conecta a uno de los interruptores la línea (cable de fase) y el neutro se conecta directo a la lámpara, como podemos observar en la figura 2, el cable de fase es le único que se interrumpe en el circuito, y cumple así con lo dictado en la Norma Oficial Mexicana NOM-001-SEDE vigente.

Instalaciones eléctricas residenciales - Conexión de apagadores de tres vías en puentes comunes

La conexión en puentes comunes evita el desgaste de los contactos por la exposición al arco eléctrico frecuente en la conexión de cortocircuito, ello garantiza que la Norma se aplique, asegura el buen funcionamiento de los interruptores e incrementa su tiempo de operación.

Como conclusión, podemos decir que la conexión en Cortocircuito es una mala práctica de los electricistas en México, pues, además de no cumplir con la NOM-001-SEDE vigente, es una conexión insegura que tarde o temprano puede provocar un mal funcionamiento de sus interruptores y hasta podría ser la causa de un accidente en nuestro hogar.

Control de iluminación por sensores de movimiento

2013/06/25

Instalaciones eléctricas residenciales - Sensor de movimiento en pared

El ahorro y uso eficiente de la energía eléctrica contribuyen en buena medida a disminuir la emisión de gases invernadero culpables del cambio climático que afecta nuestro planeta; por otra parte, cuando hacemos un uso racional de la energía eléctrica en nuestros hogares y lugares de trabajo, se refleja en una menor facturación por el servicio eléctrico.

Los interruptores activados por sensor de presencia operan sin la intervención humana, es decir, encienden y apagan la iluminación mediante un sistema de control activado por presencia, de esta manera, la luz enciende sólo cuando y en donde se requiere, y el tiempo de apagado es ajustable, con lo que se elimina la posibilidad de dejar encendidas las luces por olvido.

Es posible instalarlos en pasillos, patios o calles, y una ventaja adicional es que la luz, al encender automáticamente con el paso de las personas, da la impresión de que existe vigilancia y reduce la probabilidad de robo o actos delictivos.

Instalaciones eléctricas residenciales - Sensor de movimiento en techo

La mayoría de los interruptores de presencia funcionan con luz infrarroja (no visible), que al ser cortada por el paso de un cuerpo es interpretada por un sistema electrónico como “presencia”, la iluminación se activa de forma automática y se desactiva cierto tiempo después del último movimiento detectado.

Básicamente existen dos tipos de sensores de presencia: uno es de montaje en pared, en el mismo registro o chalupa donde iría el apagador; mientras que el otro es de montaje en techo, instalado sobre el registro del foco. El ángulo de detección en los sensores de pared va de los 90º a los 160º (aunque muchos fabricantes aseguran ángulo de detección de 180º), mientras que los sensores de techo sí abarcan los 360º, y la mayor distancia de detección se logra justo enfrente del sensor. Otra de sus ventajas es que sólo funcionan si es de noche o si el nivel de iluminación bajó considerablemente, lo que reduce operaciones innecesarias.

La conexión es muy sencilla, algunos modelos sólo requieren dos hilos de alimentación, como un apagador sencillo, mientras que otros modelos tres, dos de alimentación (fase y neutro) y el tercero es fase controlada, que va a la lámpara. En ambos casos generalmente también existe un cable verde de tierra física, que es de seguridad, pero el sensor funciona aunque no la conectemos por no contar con hilo de tierra.


En un principio los interruptores de presencia eran de uso muy limitado debido a su alto costo, escasa difusión y dificultad de instalación (casi no había personal calificado), situación que en la actualidad ya cambió, su precio se ha reducido considerablemente y su popularidad va en aumento por sus notables ventajas.

La mayoría de los sensores de presencia tienen internamente un interruptor corredizo de 3 posiciones:


  1. Encendido: la lámpara enciende independientemente de que haya o no presencia, sea de día o de noche;
  2. Automático: enciende durante un corto periodo, después se apaga y sólo vuelve a encender si detecta presencia y es de noche;
  3. Apagado: el foco permanece apagado permanentemente.


Adicionalmente, estos equipos tienen dos perillas de ajuste, una para sensibilidad o distancia de detección y la otra para regular el tiempo de apagado después del último movimiento detectado, que puede ir desde unos segundos hasta diez minutos como máximo en la mayoría de los modelos. Estos equipos pueden sustituir a los apagadores de escalera y tienen la ventaja de que un solo sensor puede controlar hasta diez focos, dependiendo de su capacidad y de la potencia de los focos.

También es posible conectar dos o más sensores en paralelo para hacer que un foco prenda si detecta movimiento en dos o más áreas.

En el mercado existen modelos de diferentes marcas y sus precios aproximados van de $250 a más de $1000, dependiendo de la marca y modelo. Cada modelo incluye un instructivo de instalación y de conexión.

Cada modelo de sensor debe conectarse de acuerdo con el diagrama que proporciona el fabricante. A continuación presentamos los diagramas de conexión más comunes:

Instalaciones eléctricas residenciales - Diagramas de conexión de sensor de movimiento

La seguridad en el funcionamiento de una central nucleoeléctrica

2013/06/24

Instalaciones eléctricas residenciales - Seguridad y energía nuclear

Debido a los severos percances sufridos por la Central nuclear de Fukushima, provocado por el tsunami que azotó Japón en marzo de 2011, una vez más la conveniencia de seguir o no utilizando la energía nuclear para fines pacíficos está en el centro del debate mundial.

El 11 de marzo del 2011 un sismo de proporciones terribles, 8,9 grados en la escala de Richter, azotó Japón y produjo un devastador tsunami que aumentó considerablemente el número de víctimas y personas desaparecidas por el temblor; y trajo además consigo graves daños a la infraestructura en viviendas, carreteras, comunicaciones, aeropuertos, así como a la Central nuclear de Fukushima. Aunado a este atroz acontecimiento el 26 de abril se cumplieron veinticinco años del peor accidente de la industria nuclear: Chernóbil. Este artículo es nuestra aportación al debate surgido de manera natural a nivel mundial acerca de los riesgos que entraña el uso de esta energía.

Para comenzar, es necesario plantear el gran estigma que pesa sobre ella, es decir, la primera manifestación de esta que conoció la humanidad fueron las detonaciones de las bombas atómicas en la Segunda Guerra Mundial, en Hiroshima y Nagasaki, justamente en el muy sufrido territorio de Japón. Esta situación ha hecho que el imaginario colectivo adopte la idea de que una central nuclear para generación de energía eléctrica es sinónimo de una bomba atómica. Los gobiernos de los países donde se tienen centrales nucleares para usos pacíficos tienen pendiente informar a la población cuáles son los alcances de una central nuclear, incluso poner en contexto la muy poco probable posibilidad de un accidente, así como sus consecuencias.

Existen en el mundo científicos muy serios que son detractores del uso de la energía nuclear, quienes se merecen todo nuestro respeto, sin embargo, muchos de los que opinan en contra de las centrales nucleares no tienen sustento técnico para hacerlo, con la energía nuclear siempre se argumentará su grave peligro para la humanidad, sin reconocerle ningún tipo de beneficio. Si realizáramos un ejercicio a nivel mundial de los últimos cincuenta años e hiciéramos una comparación de tres industrias: la petroquímica, la aviación y la nuclear para fines pacíficos, considerando los tres accidentes más graves de la industria nuclear, que son Tres Millas en Pensilvania, en los Estados Unidos, ocurrido en 1979; Chernóbil en la Unión Soviética, ocurrido en 1986; y ahora el más reciente ocurrido en la central de Fukushima en Japón, en 2011; los resultados quedarían a favor de la industria nuclear. Nuestro interés es exponer una serie de razones por las cuales se puede afirmar que la energía nuclear es segura y limpia. Respecto de los tres accidentes más graves de la industria nuclear debemos mencionar lo siguiente: Tres Millas ocurrió por un error humano y aun cuando el accidente fue de una gravedad extrema dado que el núcleo llegó a fundirse, lo que fue liberado de material radiactivo al medio ambiente fue casi imperceptible y no produjo ninguna víctima, además este accidente representa un parteaguas, ya que la industria nuclear reconoció que las centrales no eran infalibles y se produjo una transformación en varios aspectos torales de las plantas, en su diseño, en la formación de los operadores y en la planeación para respuesta a emergencias. Chernóbil igualmente se originó por errores humanos, pero sobre todo por realizar un experimento en línea, lo que derivó en el accidente que conocemos y que ha sido estudiado a profundidad.

Instalaciones eléctricas residenciales - Sala de control de central nucleoeléctrica de Fukushima

Establecer que estos dos accidentes fueron resultado de errores humanos pretende poner en contexto que los procesos fallaron derivado de los errores humanos y en el caso específico de Chernóbil por pretender experimentar en línea y con los sistemas de emergencia inhabilitados.

Finalmente Fukushima es resultado del peor sismo y tsunami que se tenga registrado en los últimos cincuenta años, la naturaleza nos ha enseñado una y otra vez que la tecnología desplegada por el ser humano en muchos aspectos todavía no es capaz de contener las manifestaciones naturales de la energía.

En nuestro país se construyó en la década de los ochenta la Central Nucleoeléctrica Laguna Verde. Este complejo nucleoeléctrico consta de dos reactores del tipo BWR, reactores de agua en ebullición. Inició operación comercial su primera unidad en junio de 1990, la segunda arrancó en abril de 1995. La Central Laguna Verde ha operado con muy altos estándares de producción con una constante: la seguridad.

Instalaciones eléctricas residenciales - Interior de la central nuclear Laguna Verde

Vale la pena mencionar las diferentes etapas por los cuales pasa un complejo nucleoeléctrico antes de que inicie operación comercial: emplazamiento del sitio; diseño de la central con su defensa en profundidad y sus sistemas redundantes (sistemas con la misma función, pero adicionales e independientes); la construcción, que demanda personal altamente calificado, el cual deberá aplicar un estricto programa de calidad, así como los códigos más rigoristas en materia de ingeniería y construcción; y la etapa previa al arranque, conocida como Puesta en Servicio.

Instalaciones eléctricas residenciales - Interior central nuclear Laguna Verde

Hablaremos sobre los aspectos más importantes de cada una de ellas:

Respecto a su emplazamiento la Central Laguna Verde se construyó en Punta Limón, municipio de Alto Lucero, en el estado de Veracruz, obedeciendo a criterios muy puntuales sobre los sitios donde será construida una central nuclear: zona de baja actividad sísmica, agua abundante para los sistemas de enfriamiento de la central, suelo rocoso que soporte la construcción de edificios de gran volumen y peso, accesibilidad y cercanía a los grandes centros de consumo; todos y cada uno de estos requisitos se cumplieron cabalmente.

El diseño de una central nuclear tiene intrínseco un concepto que se conoce como Defensa en Profundidad, el cual requiere de una serie de barreras físicas, que van desde las propias pastillas de dióxido de uranio, pasando por su encamisado de zircaloy (p. 18, revista 26), la vasija del reactor, hasta la contención primaria y secundaria; el objetivo de estas barreras es evitar la movilidad del material radiactivo. Adicionalmente cuenta con redundancias en los sistemas de suministro de energía eléctrica, posee tres divisiones, lo que significa que si falla una, se ocupa la segunda, y si pasa lo mismo, se ocupa una tercera. Existen también generadores diesel para alimentar los sistemas de enfriamiento de emergencia, estos entran a plena carga en 13 segundos.

La etapa de construcción es compleja por la serie de requisitos que existen en el programa de calidad y en los códigos de ingeniería y de construcción, lo que demanda personal altamente calificado.

Concluida la construcción, se inicia la Puesta en Servicio, etapa en la cual se prueban todos y cada uno de los sistemas que conforman la central en forma individual e interactuando, el programa avanza según resultados satisfactorios.

En la operación comercial de una central nuclear existen cuatro aspectos de la mayor relevancia, que son el fundamento de una operación segura:

Seguridad nuclear, cuyo objetivo fundamental es vigilar la correcta operación y funcionamiento del sistema de suministro de vapor nuclear, todas sus acciones van encaminadas a evitar daños al combustible y a los internos de la vasija del reactor.

Seguridad radiológica vigila todas las zonas de la central susceptibles de estar contaminadas, permite el acceso al personal a zonas contaminadas determinando los tiempos máximos de permanencia, controla la dosimetría del personal que labora en la central, así como de sus visitantes, para en caso necesario adoptar las medidas correctivas. En seguridad radiológica se observa una filosofía denominada ALARA, por sus siglas en inglés, que significa “Tan Bajo Como Razonablemente Pueda Lograrse”, aquí se maneja la estrategia conocida como: Tiempo, Distancia y Blindaje, quiere decir que entre menos tiempo de exposición tengamos a la radiación, menor será la posibilidad de daño; la distancia es muy importante, debemos alejarnos lo más que se pueda de una fuente de radiación para evitar daños; y ciertos trabajos demandan la cercanía a la fuente de radiación, por lo que debemos usar un blindaje que nos permita realizar las actividades sin riesgo de irradiarnos.

Seguridad industrial es responsable de que todos los trabajadores utilicen la ropa y los accesorios necesarios para su protección, vigila las acciones de los grupos de mantenimiento, operación y contratistas, para evitar acciones que conduzcan a un accidente o incendio, cuida que las maniobras se hagan con equipo y personal calificado, supervisa al personal contratista en recargas de combustible para que cumpla con todos los requisitos para su protección.

Seguridad física, finalmente, de la cual podría pensarse que sus principales funciones son la vigilancia, el control de acceso y la brigada contra incendio, sin embargo, incluye otras de gran envergadura, como son vigilar y establecer controles para evitar la posibilidad de un acto de sabotaje o inclusive de terrorismo (esto último consideramos que en nuestro país no está presente).

Adicionalmente a estas acciones, de las cuales se tienen indicadores monitoreados diariamente y que permiten ciclos de mejora continua, se cuenta con un envolvente muy importante tanto para la central, como para los trabajadores y la población: el Plan de emergencia. La idea común es que este únicamente se utiliza para decidir cuántas personas evacuar, cuántos albergues se utilizarán o cuántas pastillas de iodo (o yodo) estable deberán administrarse, es correcto, el plan contempla todas estas acciones, pero algo más importante es que desde que se detecta alguna condición de operación anormal o de emergencia, la operación de la planta se opera y administra con procedimientos de operación de emergencia.

Instalaciones eléctricas residenciales - Vestimenta y equipo de seguridad Laguna Verde

Hablaremos ahora de algunos mitos acerca de las centrales nucleares:

1. Un alto porcentaje de la población piensa que una central nuclear puede explotar como una bomba atómica, esto es falso, una bomba atómica necesita un combustible enriquecido o dicho de otra forma de una pureza de entre el 90 y 95%, en una central nuclear el enriquecimiento o la pureza del combustible no rebasa el 10%.

2. Se ha dicho que un accidente en la Central Nucleoeléctrica Laguna Verde afectaría varios estados de la república, incluso al Distrito Federal, falso también, los modelos de dispersión atmosférica con que se cuenta indican que la nube radiactiva no rebasaría los 16 kilómetros alrededor de la central, sin embargo, debemos reconocer que la severidad del accidente y la meteorología del momento juegan un papel decisivo, es decir, cuanto se daño el combustible nuclear, la dirección y velocidad del viento, la altura de la capa de mezcla son factores que pudieran llevar el material radiactivo más allá de los 16 kilómetros, pero existe otro factor por considerar: lo dañino de la radiación es cuando se tiene material radiactivo en altas concentraciones, pues da como resultado altas dosis, cuando sobre este material inciden agentes como el viento o la lluvia empieza una dispersión que da como resultado que las dosis disminuyan o se diluyan de manera drástica.

3. También se piensa que Laguna Verde frecuentemente realiza emisiones de material radiactivo líquido o gaseoso al medio ambiente, falso, en el proceso de generación se utiliza agua químicamente pura la cual absorbe el calor generado por la fisión nuclear y se transforma en vapor, este vapor a presión mueve las turbinas y el generador para producir energía eléctrica, después ese vapor se condensa en agua, este es un circuito cerrado que se conoce como ciclo termodinámico. Se utiliza agua de mar para el enfriamiento de la turbina, pero esta agua en ningún momento hace contacto con material radiactivo, por lo que después de cumplir su función es descargada al sur de la central, en la Laguna Salada, para su posterior reincorporación al Golfo de México.

Creemos que la mejor conclusión es a la que lleguen ustedes queridos lectores, nuestra intención fue fundamentalmente explicar ciertos aspectos y controles de la operación de una central nuclear, los cuales la hacen segura y confiable.


¿Por qué CFE maneja varias tarifas eléctricas?

2013/06/21

Instalaciones eléctricas residenciales - Carátulas de medidor de energía eléctrica

A lo largo de la evolución del ser humano se han desarrollado diferentes dispositivos y herramientas con la finalidad de facilitar el trabajo, ofrecer confort, diversión y seguridad; gran parte de este desarrollo tecnológico se da gracias a la capacidad de transformar los diferentes tipos de energías, como la mecánica (movimiento originado por caídas de agua, motores de combustión, aire, marejadas), la química y la solar, en electricidad.

La ventaja de la energía eléctrica es que puede ser transportada instantáneamente desde las fuentes de generación hasta los centros de consumo en donde se transforma en energía mecánica, luz, calor, etc. a través de motores, lámparas y resistencias eléctricas.

Con la finalidad de poder entender los parámetros básicos que intervienen en los costos y tamaño de las instalaciones eléctricas ponemos a consideración los siguientes conceptos.

La energía eléctrica básicamente consiste en hacer circular electrones libres a través de conductores, dispositivos y equipos. La fuerza con que estos electrones libres se mueven se les llama tensión eléctrica, comúnmente llamado voltaje (por sus unidades, los volts).

El número de electrones libres que se desplazan por un punto dado en la unidad de tiempo es la corriente eléctrica, cuyas unidades son los amperes: el producto de estos parámetros da la potencia eléctrica, que es la fuerza por la cantidad de electrones, cuyas unidades son los watts.

El tiempo que se usa esta potencia da como resultado la energía eléctrica cuyas unidades son watts-hora. Todo aquel dispositivo o equipo que utiliza energía eléctrica para funcionar se le llama carga (motores, lámparas, electrodomésticos, hornos, etc.) y generalmente tiene indicada la potencia (watts) que utiliza para funcionar satisfactoriamente.

Dado que no es económicamente rentable el almacenar energía eléctrica en grandes cantidades, ésta se debe producir en el mismo momento en que se consume o utiliza, de tal forma que el dimensionamiento de las fuentes de generación y los elementos de la instalación (conductores, protecciones, elementos de seccionamiento, etc.) se diseñan y/o seleccionan en base a la tensión (volts) y la demanda expresada en corriente (amperes) y/o potencia (watts), que tiene que transportar desde la generación hasta los elementos de consumo (cargas).

La energía eléctrica (kWh), conocida comúnmente como consumo, está relacionada directamente con el tiempo que se utiliza un dispositivo, esta energía se traduce en la cantidad de materia prima que requieren las fuentes para poder generarla (m3 de agua, barriles de combustóleo, cantidad de vapor, etc.), de tal forma que en el costo del servicio de energía eléctrica debe de estar reflejado el costo de la energía consumida (kWh), el nivel de tensión (Volts) y demanda (kW).


En las tarifas domesticas (1) y las de pequeños comercios o micro empresas (2) se cobra el consumo de energía (kWh), mientras que en las tarifas 3 y OM usadas en pequeños y medianas empresas y comercios además de la energía se cobra la demanda (kW) máxima que se tuvo en el mes (cuadros 1 y 2):

Instalaciones eléctricas residenciales - Tarifa doméstica CFE

Instalaciones eléctricas residenciales - Costo de energía CFE

Los costos de energía dependen básicamente de los costos de producción y los costos de la demanda de la infraestructura necesaria para trasportar la energía desde las fuentes de generación hasta el punto de consumo.

De acuerdo con lo anterior, para reducir el costo de facturación de energía eléctrica es necesario disminuir el consumo (kWh) utilizando equipo más eficiente, disminuir las pérdidas a lo largo de los conductores y dispositivos de las instalaciones, desconectar los equipos que no se usen y evitar las fugas a tierra, que se dan por fallas en el aislamiento de las conexiones o del cableado.

En servicios con tarifas 2 y 3 donde se cobra la demanda (kW) es necesario tener una adecuada administración del uso en el tiempo de los equipos y dispositivos disminuyendo la simultaneidad, en la medida de lo posible, de la puesta en servicio de éstos, dado que la medición indica la demanda media en kilowatts durante cualquier intervalo de 15 minutos en el periodo de la facturación.

Una instalación eléctrica debe ser segura para las personas y sus propiedades. Para cuidar este punto, la Secretaría de Energía emitió la NOM-001-SEDE vigente, que tiene como objetivo establecer las especificaciones y lineamientos de carácter técnico que deben satisfacer las instalaciones.

En forma general, la NOM indica el tamaño mínimo de los conductores, la capacidad máxima de las protecciones, conexión de puesta a tierra, tamaño de tuberías o canalizaciones para alojar los conductores, entre otras especificaciones.

Para el ahorro de energía las oportunidades están en utilizar equipos o dispositivos más eficientes (alumbrado, motores, acondicionadores de aire, refrigeración), disminuir la generación de calor al utilizar conductores seguros y económicamente rentables, revisar puntos de uniones o conexiones (tornillos, empalmes o uniones entre conductores) y evitar fugas a tierra. En los servicios que tengan tarifa 3, OM, HM debe cuidarse la demanda máxima que se registra cada mes, para lo cual es necesario llevar una administración adecuada de la hora en que se ponen en servicio los equipo. Lo ideal es que la demanda cada hora sea la misma.

instalaciones

eléctricas

residenciales

Uso cookies para darte un mejor servicio.
Mi sitio web utiliza cookies para mejorar tu experiencia. Acepto Leer más